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ABSTRACT OF THIS DISSERTATION

MUCOADHESIVE FILMS FOR TREATMENT OF LOCAL ORAL DISORDERS:
DEVELOPMENT, CHARACTERIZATION AND IN VIVO TESTING

Mucoadhesive drug delivery systems which are being used from 1980’s to avoid
first pass metabolism of drugs, commercially exist for only systemic drug delivery with
fast erosion times (15-60 min), that may not be appropriate for local oral disorders. The
goal of this research was to develop and characterize mucoadhesive films with flexibility
of carrying different drugs and proteins and provide sustained release for local treatment
of oral disorders.

Mucoadhesive  films composed of polyvinylpyrrolidone (PVP) and
carboxymethlycellulose (CMC) were formulated with imiquimod, an immune response
modifier. Problems such as solubilization of imiquimod to increase drug loading,
uniformity in films and total amount of drug released into supernatants were addressed by
use of acetate buffer after investigating multiple methods.

Subsequently, other relevant properties of mucoadhesive systems, such as adhesion
(shear, pull-off), tensile properties, swelling profiles, transport kinetics, and subsequent
changes in release profiles as a function of film composition were characterized. The
potential of the system for local retention of imiquimod, determined in oral mucosa of
hamsters showed time dependent decrease in imiquimod amount through 12 hours, with
no traces of drug in blood. Further testing in humans revealed that the residence time of
the mucoadhesive films depended on the application site, increasing in the order of tongue
< cheek < gingiva.

In parallel, mucoadhesive films loaded with epidermal growth factor (EGF) were
developed to promote treatment of oral mucosal wounds. Bioactivity was tested in vitro on
buccal tissues by creating a wound followed by application of films. Although EGF-loaded
films did not accelerate wound healing, but rather elicited a hyperparakeratotic response.
In vitro buccal tissues may not be appropriate for testing the effects of EGF in wound
healing without incorporation of other biochemical factors.

Overall, a mucoadhesive system capable of delivering bioactive small molecules
and proteins in sustained manner was developed in this work. A thorough understanding
of the system properties was achieved to further tune for future applications. In vitro studies
and in vivo studies in hamsters and humans clearly showed the potential and usefulness of
the system to translate in to clinic for treatment of oral precancerous lesions.

KEYWORDS: Mucoadhesive films, imiquimod, oral dysplasia, mucosal wound healing,
local treatment.
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Chapter 1 Introduction

Oral mucosal membranes composed of epithelial cell layers and connective tissue
act as an efficient semi-permeable barrier system, allowing diffusion of water, nutrients,
gases, and small molecules, while remaining impermeable to bacteria and pathogens.
Delivery of drugs through the oral mucosa has gained prominence in the last two decades
because of its rich vasculature, which enables rapid delivery and onset of action and avoids

first pass metabolism of drugs (1, 2).

Mucoadhesive formulations dating back to 1947 have significantly improved from
1980s in delivery of active molecules to various mucosal surfaces (3). Different
formulations such as gums, films, tablets, gels, and microparticles were developed to
deliver molecules via oral transmucosal route (2). These systems adhere to the mucosal
surfaces and provides high flux of drug transport, increases bioavailability, improves
permeability, and protects the structure of proteins (4). Commercially approved
mucoadhesive drug delivery systems (Striant™, Nitrogard®, Fortfivo XLFR, etc) are being
used to treat systemic disorders only. In this dissertation, a mucoadhesive system composed
of polyvinylpyrrolidone (PVP) and carboxymethylcellulose (CMC) was developed to treat

local disorders such as oral dysplasia and mucosal wound regeneration.

Oral squamous cell carcinoma (OSCC), estimated to effect 42,440 patients in 2014,
is preceded by abnormally matured precancerous lesions known as oral dysplastic lesions.
Treatment of these precancerous lesions can prevent them from progressing to OSCC and
avoid further complications (5, 6). Imiquimod, an immune response modifier in form of
Aldara® cream, was successful in treatment of the superficial basal cell carcinoma and few
clinical cases of oral leukoplakia (7, 8). Hence, as described in chapter 3, a bilayered
mucoadhesive film loaded with imiquimod was fabricated by solvent casting method.
Because of highly hydrophobic nature of imiquimod, three methods of loading were also
investigated to increase solubility and loading capacity of the films. Mucoadhesiveness of
the films and bioactivity of entrapped imiquimod were confirmed before further

characterization and development.
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Five types of films, including the former one were then fabricated by simply
changing the composition of PVP and CMC, and characterized in hopes of identifying a
formulation with all desired properties. Key factors for successful bioerodible
mucoadhesive system such as tensile properties, adhesion strength, and swelling rates were
characterized and compared in chapter 4. Two compositions were shortlisted and further
compared based on their release profiles and erosion characteristics. Interestingly,
permeability studies of the films on porcine mucosal tissue revealed significant increase in

localization of imiquimod within epithelium compared to drug solution.

The performance characteristics of the mucoadhesive films were investigated in
vivo in chapter 5. Residence time of the films were determined at three different application
sites in humans to get an overall assessment. Because of no abundant literature about
testing of long residing mucoadhesives in small animal models, the hamster cheek pouch
model was investigated to determine the appropriate site for testing of the films. The
localization of imiquimod in mucosal tissue as observed in permeability studies was
verified and quantified in hamsters, and compared to commercial imiquimod cream

(prescribed for skin lesions) in this chapter.

The versatility of the current delivery system to load a variety of drugs, such as
small molecules and proteins, was shown in chapter 6, by fabricating epidermal growth
factor (EGF) and lysoszyme loaded films. These films are then used to address another
local disorder, mucosal wound healing. The films achieved sustained release of bioactive
EGF for up to 6 hours in vitro. The efficacy of the films was tested on in vitro buccal tissues
(ORL 300-FT) by making a wound of 3 mm in diameter.

With a vision of addressing more disorders in the future and improve treatment
processes, various attempts to increase residence time of the films were discussed in the
appendix of this dissertation. Addition/substitution of new polymers to the existing
polymer composition was investigated to improve the erosion time and prolong drug
release. Although some properties were improved in these studies, the enhancement of all
essential properties was not achieved. In addition to new polymers, other changes such as
design of the system, and specific adhesions are desired in order to achieve balance in

improving properties.
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Chapter 2 Background

2.1 Biology of Oral Mucosa

2.1.1 Structure
Oral mucosa is a mucus membrane, lining the majority of tissues in the oral cavity,

such as lips, gingivae, and palate. Oral mucosa is made up of two layers: surface stratified
squamous epithelium and underlying connective tissue, lamina propria. Epithelium
protects underlying tissues by acting as a mechanical barrier, and also absorbs nutrients
and various compounds. Lamina propria, which acts as a mechanical support to epithelium,
comprises of collagen, elastic fibers and cells in an aqueous ground substance. Lamina
propria also contains lymph system, nerves, and a rich supply of blood vessels that helps
in fast transportation and clearance of absorbed molecules. (9).

Stratified squamous epithelium is composed of three distinct epithelial cell layers:
superficial keratinized/non Kkeratinized squamous layer, intermediate spinous cell layer,
and basal cell layer. Active basal cells derive nutrients from lamina propria in order to
mature, change shape, and differentiate, while advancing through the intermediate layers
to the superficial layers (2, 10). The epithelium is supported by an underlying basement

membrane that provides the required adherence between the epithelium and lamina propria.

Oral mucosa with a surface area of 200 cm?, varies widely in terms of thickness
and keratinization depending on the region of the oral cavity. It is divided into three types
based on its structure. 1) Masticatory mucosa, constituting 25% of total oral mucosa covers
the gingivae and hard palate. It is keratinized and closely resembles epidermis of the skin.
2) Lining mucosa (60%), is non-keratinized and generally thicker than masticatory
mucosa, and covers buccal, sublingual and inner side of lips. 3) Specialized mucosa, (15%)
which covers the top surface of the tongue, comprises properties of both masticatory and

lining mucosa (9).
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2.1.2 Mucus
Epithelium is coated and surrounded by a heterogeneous viscoelastic gel called

mucus. It plays a role in cell-cell adhesion, relative motion of cells, and adhesive properties
of the oral mucosa (2). While this intercellular substance is produced by special goblet cells
at other mucosal regions, it is produced by major and minor salivary glands in the oral
cavity. pH of mucus coating in the oral cavity ranges from 6.2 to 7.4 with thickness ranging
from 40 to 300 pum. Mucus is composed of 95% of water and other constituents such as
inorganic salts (1%), carbohydrates and lipids (1%), and glycoproteins (<5%) (11).
Glycoproteins, also known as mucins, are responsible for gel and viscoelastic properties of
mucus. Mucins are made up of 500 kDa subunits that are oligosaccharide based graft chains
on protein-based backbones. These subunits are linked together by peptide linkages and/or
intra molecular cysteine-cysteine disulfide bridges to form mega chains ranging from 1
kDa to 40 MDa (11).

Oligosaccharides which constitute 80% of the total weight of mucin, covers 63%
of the length of protein backbone. The amino acid composition of protein backbone is
dominated by 70% of serine, threonine, and proline. Oligosaccharides chains are composed
of sugar residues N-acetylgalastosamine, N-acetylglucosamine, galacotose, fructose and
sialic acid (3). Presence of carboxylate groups and ester sulfate groups in the sugar residues
resulted in a net negative charge with pKa of 1.0 to 2.6, and attracts water. This water
attracting properties of oligosaccharides make mucins hydrosoluble and protect protein
from proteolytic degradation. Because of several possible interactions of proteins and sugar
residues with polymers, mucus is responsible and advantageous for maintaining adhesion
of mucoadhesive formulations. However, short turnover life of mucus hinders prolonged

residence time of dosage forms.

2.2 Drug Delivery to Oral Mucosa
Oral mucosal membranes act as an efficient semi-permeable barrier system

allowing diffusion of water, nutrients, gases and small molecules, while remaining
impermeable to bacteria and pathogens. High vasculature in the connective tissue of oral
mucosa provides direct diffusion of permeated molecules in to the systemic circulation.
This avoids first pass metabolism of drugs and can cause rapid onset of their action.

Permeability of active compounds varies with regions of the oral cavity and is inversely
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proportional to keratinization and thickness of tissue. Molecules are most permeable
through sublingual regions, followed by buccal and palate surfaces. Although sublingual
regions are advantageous for rapid onset delivery because of high blood flow and less
permeability, they are not suitable for controlled release systems because of constant saliva
washing and tongue activity, which makes it difficult for dosage forms to reside on surface.
In contrast, buccal mucosa offers a smooth and relatively immobile surface for long lasting

controlled release systems (2, 10).

Before reaching vasculature, drugs have to be diffused through different layers in
oral mucosa such as hydrophilic mucus, keratinized layers if applicable, densely packed
epithelial cell layers, basement membrane and hydrophilic connective tissue. Any of these
layers may pose as a major barrier in transport of drugs based on their properties such as
molecular weight, lipophilicity, partitioning and solubility. It was generally observed that
the top epithelial layer of thickness 200 um is a major rate limiting factor in transport
kinetics of drugs and proteins (9, 12). This permeability barrier is attributed to densely
packed cells and so-called membrane-coated granules (MCG). MCGs are spherical/oval
granules of 1-3 um in diameter. These are located in intercellular spaces of intermediate
cell layers at the top third of both keratinized and non-keratinized epithelium. The
partitioning coefficient and solubility of drugs play more significant role than molecular
size in their transportation across epithelium layer. Increased lipophilicity helps in the

permeation of drugs through cell membranes and epithelium. (9).

The two major pathways of drug diffusion in the oral cavity are: a) transcellular,
where compounds transverse across cells and b) paracellular, where compounds diffuse
through intercellular spaces. The preferred route of compounds depend on their
physiochemical properties. Because intercellular spaces are hydrophilic, and cell
membranes are lipophilic in nature, they act as barriers to lipophilic and hydrophilic drugs
respectively. Several absorption enhancers are being investigated and used to improve

diffusion of molecules (2, 9).
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2.3 Mucoadhesive Drug Delivery Systems
Mucoadhesive systems are composed of water soluble polymers that become

hydrated up on contact with mucous tissue. These hydrated polymers undergo contact
mixing with the mucin layer of mucous tissue to some depth, and form semi-permanent
adhesive bonds, entanglements, and secondary chemical bonds. Bioavailability of drugs is
increased by mucoadhesive systems because of their prolonged residence time at the
application site. Intimate contact between a mucoadhesive and absorbing tissue provides
high flux of drugs. Mucoadhesives can also increase the permeability of high molecular
weight molecules, such as proteins (4).

2.3.1 Mechanism of action
The adhesion of mucoadhesives to tissue is the prominent feature of system, by

providing several unique properties and advantages as described in former section. Various
theories have been proposed in literature explaining possible mechanisms of the
mucoadhesion (3, 4). Mucin, which coats epithelium, plays dominant role in the adhesion
of mucoadhesives. Polymers interact with the mucin and adhere in one or more of the

following ways:

)] Electronic theory: Adhesion of polymers to mucin is formed due to their
electronic interactions with the glycoproteins. Electrostatic attraction between
positively charged polymers and negatively charged mucin generally favors the
adhesion.

i) Adsorption theory: Chemical interactions between polymers and mucin
develops adhesion. Primary chemical bonds or secondary interactions such as
van der Waals forces, hydrogen bonds and hydrophobic bonds are responsible
for the adhesion.

iii) Wetting theory: The ability of polymers in liquid formulations to spread over
mucin determines adhesion of a system.

iv) Diffusion theory: The mutual diffusion of mucin glycoproteins and polymers
to form interpenetrable layer and entanglements is responsible for the adhesion.
Factors such as molecular weight, hydrodynamic size affects diffusion of

polymers in to mucin.
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V) Mechanical theory: Surface roughness on delivery systems determines the
adhesion and increased roughness favors the adhesion due to increased contact

area.

2.3.2 Factors affecting mucoadhesion
Mucoadhesion is affected by several physiochemical properties of polymers such

as molecular weight, concentration, charge, functional groups, and the environment. While
low molecular weight polymers can penetrate easily into mucus, high molecular weight
polymers can have more entanglements with mucin. Hence ideal molecular weight is
desired to achieve balance in diffusion of chains and their entanglements. The minimum
molecular weight of polymers being used in mucoadhesive systems is desired to be 100,000
Da (10). However, ideal molecular weight is unique to each type of polymer, because of
other properties such as flexibility, charge, and secondary interactions. Minimum amount
of polymers also known as critical concentration, is required to achieve a stable interaction
with mucus. While concentrations above the critical concentration decrease the flexibility
and diffusion of polymers, low concentrations result in less polymer interactions per unit

area of mucus, than required for stable adhesion.

Owing to the negative charge of mucin, ionic polymers, specifically cationic
polymers, may exhibit better adhesive properties. Presence of functional groups on the
polymers to form secondary bonds improve adhesive properties of the systems. Rate of
hydration and swelling determines residence time of the systems and release profiles of
active molecules. Environmental factors such as pH of saliva changes the ionization state
of polymers, and may cause different behavior of the systems (4, 10).

2.4 Mucoadhesive Polymers
Several polymers are being investigated and used in mucoadhesive systems by
different groups. These polymers can be classified based on different characteristics such

as their source, charge, solubility and new generation of specific polymers.
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2.4.1 Natural polymers
These polymers are synthesized naturally, and extracted from organisms and plants.

Some examples of these polymers are agarose, gelatin, hyaluronic acid, and chitosan (10).
Chitosan exhibited excellent mucoadhesive properties because of its ability to form strong
electrostatic interactions with mucin, and supported by hydrogen bonds (3). Presence of
functional groups in chitosan, such as amines and hydroxyls also provided opportunities to
crosslink and derivatize new products. Several other natural polymers such as xanthan,
gellan, pectin, sodium alginate, guar, and hakea were also used in composing
mucoadhesives (10).

2.4.2 Synthetic polymers
Synthetic polymers are usually designed to resemble structures of natural

polymers, but with slight modifications to enable the enhancement of desired properties.
These polymers possessing high molecular weight, new functional groups, and charged
groups help in forming controlled three dimensional network (10). Some of the widely used
synthetic polymers in the mucoadhesives are cellulose derivatives, acrylic acid polymers,
and vinyl polymers (4).

Cellulose derivative group of polymers such as carboxymethyl cellulose,
hydroxypropyl cellulose, hydroxyethyl cellulose, and methyl cellulose possess cellulose
backbone with modified hydroxyl groups and carboxyl groups. Presence of the carboxyl
groups attracts water and cause enormous swelling and diffusion of the polymer chains.
These carboxylic groups also deprotonate and form ionic interactions, andhydrogen bonds
with mucin oligosaccharides. Polymers based on acrylic acid and their derivatives includes
carbopol, poycarbophil, poly(methacrylate), and poly(ethylene glycol). In addition to their
hydration properties and hydrogen bonds, they exhibit ability to interact with the thiol
groups of mucin. Vinyl polymers such as polyvinylpyrrolidone and polyvinyl alcohol
possess good hydrogen bonding capacity to mucin in addition to their swelling
properties.(3, 4, 10).
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2.4.3 Polymers with specific interactions
New generation of polymers are being developed to achieve specific interactions

with mucin and cell surfaces. One such type of polymers, known as thiolated polymers, are
made by modifying one of the mucoadhesive polymers with side chains possessing
additional thiol functional groups. Thiol functional groups form covalent bonds (disulfide
bridges) with the cysteine rich subdomains of the mucin glycoproteins. Formation of these
primary bonds improved mucoadhesion greatly compared to their original polymers. Some
examples of these polymers are poly(acrylic acid)/cysteine, chitosan/N-acetylcysteine,
alginate/cysteine, chitosan/thio-glycolic acid, chitosan/thioethylamidine (3).

Lectin-mediated bioadhesive polymers, another kind of specific polymer, are made
by conjugating lectin to the original mucoadhesive polymers. These polymers are capable
of attaching specifically to the epithelial cell surface in contrary to nonspecific interactions
to the mucin. Such direct adhesion of the polymers to a cell surface increase residence time,
because the polymers cannot be washed away even though mucus and saliva are
continuously being washed away and replaced by fresh mucus and saliva in short times.
Lectins, found in bacteria and plants, achieve specific interaction by binding to certain
sugars on the cell membrane. Other molecules capable of specific interactions, such as
fimbriae (key role in bacterial adhesion) and antigens are also being conjugated to
traditional mucoadhesive polymers to further improve residence times of mucoadhesives
systems(10).

2.4.4 Polymer blends

Blends of structural and adhesive polymers are also being developed to obtain
mucoadhesivity and strong patches simultaneously (4). For buccal absorption of different
drugs, mucoadhesive films were prepared from blends of: chitosan and copolymer of poly
vinyl alcohol and polyethylene; chitosan, polyvinylpyrrolidone, and gelatin; copolymer of
methylvinyl ether and maleic anhydride; and polyvinylpyrrolidone plus carboxymethyl
cellulose (13-16). Each system, however, has limitations such as burst release, complexity
of preparation, and compatibility with the drug. Consequently, research continues to

identify polymer blends with desirable properties.
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2.5 Local Oral Disorders
Many of the approved mucoadhesive films/tablets such as BEMA technology (Bio

Delivery Sciences International, Raleigh, NC), Striant™, Nitrogard®, Fortfivo XLR, are
only being used to deliver drugs systemically. These systemic drugs are targeted to treat
different disorders such as pain relief (cancer treatment, heart disease), antidepressants and
supplementation of hormones (testosterone). Although some films are being investigated
for treatment of local disorders, none of them are not commercially available. Some of the
local oral disorders which will be addressed in this research work are discussed below.

2.5.1 Oral squamous cell carcinoma
Oral squamous cell carcinoma (OSCC) refers to any malignant cancer that arises

from squamous epithelial cells in the oral cavity. All tumors are result of multistep process
of accumulated genetic alterations (17). In this multistep process of progression toward
OSCC, precancerous lesions characterized by hyperplasia and dysplasia are frequently
observed (17). While hyperplasia refers to abnormal proliferation of cells, which can be
controlled again with normal regulatory mechanisms, dysplasia refers to abnormality in
maturation of cells (18). Dysplasia can be characterized by loss of normal epithelial
stratification within the oral tissue, loss of polarity in the epithelial cells, nuclear
pleomorphism and hyperchromasia, abnormal single cell keratinization (dyskeratosis), and
increased or abnormal mitoses (19). Dysplasia is graded as mild to severe based on the
accumulated nuclear abnormalities. As the dysplasia becomes severe, these abnormalities
become more marked at increasing depth into the epithelium. The chances of developing
carcinoma depend on the severity of dysplasia. Squamous cell carcinoma develops from
dysplastic oral mucosal lesions if an early treatment has not been made (19). Hence
treatment of the cancer at the dysplastic stage has enormous potential for decreasing

incidence, metastasis, and improving survival periods (20).

Leukoplakia and erythroplakia are clinically applied terms in identifying the oral
precancerous lesions. According to the WHO, leukoplakia is a clinical white patch or
plague that cannot be characterized clinically or pathologically as any disease. Leukoplakia
lesions results from chronic irritation of mucous membrane by carcinogens, which
stimulates the proliferation of white epithelial cells and connective tissue (21). It is the
most common form of oral precancer, representing 85% of oral premalignancy (19). The
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potential of leukoplakia to convert to malignant cancer can only be confirmed on biopsy,
based on association with dysplasia; if not associated with dysplasia, there is <5% chance

of converting to malignant cancer (18).

Erythroplakia is generally characterized by superficial, friable red patches adjacent
to normal mucosa. Similar to leukoplakia, it refers to a red patch that cannot be
characterized clinically or pathologically as disease. This form is associated with epithelial
dysplasia ranging from moderate to severe dysplasia or carcinoma. Several studies indicate

that 40% of erythroplakia forms have converted to malignant cancer (18, 21).

2.5.1.1 Treatment options
The type of treatment for OSCC depends on the stage and location of the tumor.

The best available treatments are surgery, radiation therapy, or combination of the two.
These treatments are preceded and followed up by chemotherapy to activate cancerous

cells to radiation and to avoid metastasis respectively.

Surgery is the mainstay treatment of the early stage oral squamous cell carcinomas
(22). Primary tumors with adequate margins are carefully resected using craniofacial
approaches involving osteotomies of mandible and selective neck dissections to access
internal parts of oral cavity (22). Morbidity and postoperative disabilities resulting from

surgery are the major disadvantages of this treatment approach.

Radiation therapy can be a good alternative to preserve function, cosmesis, and to
avoid the morbidity associated with a major operation. It is also used in combination with
surgery postoperatively to remove the residual cancer and preoperatively to render an
advanced unresectable cancer to complete surgical removal (23). Even though this kind of
treatment can be successful, unavoidable exposure of the operator to radiation, and nursing
care required for the duration of treatment are some of the drawbacks.
Radioimmunotherapy, a recent development that involves the use of radiolabeled
monoclonal antibodies specific to cancer cells. Lack of monoclonal antibodies with a high
specificity for head and neck cancers, however, is slowing down the advancement of this
technique. Promising results have not been achieved for solid tumors, but this approach is

being considered as a good alternative treatment (24, 25)
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Photodynamic therapy, one of the newer alternatives to radiation therapy and
surgery (26), involves use of a photosensitive prodrug that is injected into the body by
systemic delivery. After the prodrug reaches the tumor, it is activated by exposure of tumor
to laser light of specific wavelength. Many groups are evaluating this therapy for treatment
of squamous cell carcinoma, especially for early stages of oral and neck cancers (27).
However, huge loss of drug due to systemic delivery, uncertain long-term results, and
various other factors, such as drug dosage, time interval between dye administration and
light application, and avoiding sun for a minimum of 30 days, are some of the drawbacks.
Hence photodymanic therapy has not yet been used widely in treatment of oral cancers (26,
27).

2.5.2 Oral mucosal wounds and their regeneration

Wound healing is a complex process involving multiple cells, cytokines, and
growth factors which occurs in different phases known as hemostasis, inflammation,
proliferation and remodeling. Although these phases occur separately, they widely overlap
in time, molecules, and space (28). Any change in proper sequence, specific time, and

duration of biophysical functions results in impaired healing and fibrosis.

Oral mucosal wounds are observed to heal faster at an average time of 2 weeks with
no or minimal scar formation. This was observed and reported in several rodents, big
animal studies and human clinical cases (28, 29). Faster and scarless healing of the oral
mucosa is attributed to several reasons such as higher reepithelialization rate, faster
proliferation of fibroblasts, small amount of immune mediators, and ready availability of
multipotent stem cells. In addition presence of saliva is believed to decrease immune

response, fibrosis, and provides several growth factors (29).

Although the oral mucosa exhibits faster healing, these processes may not help in
large wounds such critical size defects and/or where chunks of tissue are lost. Such injuries
are generally observed in trauma patients, battlefield injuries and surgical wounds.
Craniomaxillofacial injuries account for 15-34% of general trauma and 26% of battlefield
injuries (30, 31). Oral mucosal deficiencies are created in several clinical conditions, such
as post-neoplastic ablation, periodontal pathologies, tooth replacements, and preparation

of oral mucosal grafts for urethral reconstructive surgery (32, 33).
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Treatment options of these defects include use of autografts extracted from other
mucosal surfaces. This approach however results in morbidity due to second surgery and
also limited by available mucosal tissue for harvesting. Owing to advances in tissue
engineering and decellularization process, use of allografts and lab grown tissue engineered
oral mucosal grafts showed short term clinical success (34, 35). These ex vivo mucosal
grafts, however, are also limited by some factors such as reduced viability, difficult

handling, and fabrication time of 4-6 weeks (29).

2.5.3 Other major disorders (ulcers)
Oral mucositis (OM), an inflammatory ulcerous oral wound condition, is a

commonly occurring side-effect of anti-cancer therapies, including chemotherapy and/or
radiotherapy (36). The incidence rate of the OM is 30-75% in patients subjected to
chemotherapy and 70-90% of bone marrow recipients (36-38). It was found even more for
head and neck radiotherapy, exceeding 90% (39, 40). This painful and debilitating
condition is manifested by erythema and inflammatory lesions, which rupture through the
oral epithelial mucosal walls, compromising the patient’s overall quality of life by affecting

routine functions, such as eating, swallowing, and speaking.

Current treatment options of this disorder address more on symptom management
rather than halting of damage and regeneration of damaged tissue. Oral mouth rinses
(Caphosol™) give rapid relief due to their moisturizing effect but do not aid healing.
Although some oral rinses, such as “Magic Mouth Wash”, have combinations of
ingredients, including antibiotic, antihistamine, antifungal, steroid, local anesthetic, and/or
antacid, they are ineffective in treating OM and had only therapeutic value equivalent to a

non-therapeutic saline mouthwash. (37, 41, 42).

One possible reason for failure of oral rinse products may be due to lack of drug
localization because of short residence time. The oral cavity is a complex environment that
experiences continual salivary flushing, which helps to provide a hydrating medium for
drug distribution, but such effects also result in rapid drug clearance by swallowing. In
overcoming such drawbacks, a drug delivery device should be capable of minimizing
salivary dilution effects, thereby potentially reducing/obviating the need for repeated drug

dosing. Bioadhesive gels, such as Gelclair and Zilactin, are an alternative to washes.
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Although these gels can be applied to irregular surfaces and can have increased residence
time compared to mouth rinses, they may still remain susceptible to shear forces from the
tongue and cheeks and continuous salivary flushing. The presence of a non-degradable and
hydrophobic backing layer in the proposed mucoadhesive film in this dissertation can

protect mucoadhesive components from all these forces.
2.6 Specific Aims
This dissertation research was guided by the following specific aims.

e Develop a mucoadhesive system loaded with imiquimod by addressing loading and

solubility problems due to imiquimod hydrophobic nature.

e Characterize adhesive, mechanical properties, swelling, and release properties and

compare them with change in composition of polymers.

e Analyze permeability and transport kinetics of films ex vivo and check their

bioactivity in vitro.

e Identify residence time of films in vivo in humans and hamsters followed by
quantification and distribution of the drug in the local mucosal tissue and blood of

hamsters.

e Develop epidermal growth factor (EGF) loaded films and investigate their

bioactivity, and efficacy on wound healing of oral mucosal tissues in vitro.

14
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Chapter 3 Development of Imiquimod-Loaded Mucoadhesive Films for Oral
Dysplasia

3.1 Introduction

Oral cancer is the eight and eleventh most common human neoplasm in men and
women, respectively, and is expected to account for 2.5% of all newly diagnosed cancers
in 2012 (21). Nearly 40,250 new cases and 7,850 deaths are expected in the United States
alone in 2012 (21). Low cancer survival rates can be improved by early diagnosis, because
survival is directly related to the stage of the disease at the time of diagnosis (20).
Treatment at an early, precancerous stage is the most desirable management strategy,
avoiding field cancerization, metastasis (20), and progression of disease. Precancerous
dysplastic lesions of the mouth and skin have an advantage in detectability because they
are externally visible. For oral lesions, however, current treatments, such as surgical
resection, radiation, and chemotherapy, are primarily administered after the disease has
already progressed to oral squamous cell carcinoma (OSCC). Furthermore, resection of
dysplastic regions can lead to postoperative disabilities. Hence, unlike standard invasive
treatment approaches, this study was designed to develop a noninvasive and local treatment

approach.

Oral dysplasia refers to premalignant changes preceding OSCC. The chances that
carcinoma will occur depend on the severity of dysplasia. Several compounds, such as
vitamin A, carotene, retinoids, antioxidants, lycopene, fenretinide, and genistein, are being
investigated for their potential to stop the progression of oral dysplasia to OSCC (14, 43-
45). However, imiquimod, the only immune response modifier approved for market (as
Aldara), has been successfully used to treat actinic keratosis and superficial basal cell
carcinoma (sBCC) (7, 46, 47). In addition, the off-label use of imiquimod cream has been
successful in treating precancerous lesions and malignancies of several mucosal surfaces,
including neoplasm of the vulvar epithelium, lip ulcers, erythroplasia of Queyrat,
melanoma of the intraepithelial oral mucosa, and even oral leukoplakia (8, 47-50).
However, all of these procedures used the original (Aldara) cream to treat lesions in the
oral cavity. Creams are typically not used intraorally because they can be easily washed

away with continuous saliva turnover and movements of the mouth. This washing can
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cause the drug to affect the surrounding healthy tissue and may result in systemic side
effects because of intestinal absorption. These deficiencies highlight the need for an
imiquimod delivery system that increases residence time on the mucosal surface, enhances

bioavailability, and targets specific lesion sites.

Mucoadhesive drug delivery systems are being used to improve the efficiency of
drug delivery (4). The dual ability of these systems to adhere to mucosal surfaces and to
control drug release may provide a better system for imiquimod delivery than Aldara
cream. Intimate contact between mucoadhesive and absorbing tissue provides a high flux
of drug and increases bioavailability (4). These properties of mucoadhesive drug delivery
systems provide the advantage of localizing the drug on mucosal surfaces, thereby avoiding
first-pass metabolism and the adverse effects associated with systemic drug delivery. The
versatility of mucoadhesive systems also allows easy use of various drugs and proteins

with only slight changes in the processing of films.

Aldara cream contains imiquimod in a hydrophobic formulation containing fatty
acids. However, in an effective mucoadhesive system the drug must be uniformly dispersed
in hydrophilic polymer solutions and released in a hydrophilic environment (mucus). The
lack of knowledge about the use of imiquimod in hydrophilic systems required the
exploration of various methods of loading the drug delivery system and the subsequent

release profiles.

Commercially available mucoadhesive systems, such as BEMA technology (Bio
Delivery Sciences International, Raleigh, NC) and most others (4), were designed to last
for 15 to 45 minutes and to provide systemic drug delivery. In contrast, an effective
treatment approach for precancerous oral lesions requires local delivery and longer
residence times of the drug on only the buccal mucosa. The study reported here used
bioerodible and FDA-approved polymers, polyvinylpyrrolidone as a structural polymer
and carboxymethylcellulose as an adhesive polymer, to provide a flexible polymer matrix

for the control of drug release.
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The overall objective of this study was to design and characterize a bilayered
mucoadhesive drug delivery film for localized delivery of imiquimod. Because of the
highly hydrophobic nature of imiquimod and the challenges associated with improving its
solubility in hydrophilic polymers, the present study also sought to evaluate various
methods of increasing drug loading in the films and to evaluate the subsequent effects on

in vitro release of bioactive drug.

3.2 Materials and Methods

3.2.1 Chemicals
Pure imiquimod was purchased from CalBiochem (White House Station, NJ).

Polymers used for making films were polyvinylpyrrolidone (PVP) K-90 (Spectrum; New
Brunswick, NJ) and carboxymethylcellulose (CMC; sodium salt, medium viscosity;
Sigma, St. Louis, MO). Other chemicals used were propylene glycol, ethanol (190 proof),
2-hydroxypropyl-p-cyclodextrin (HPBCD; cell culture tested), poly(ethylene-co-vinyl
acetate) (PEVA; 18wt% vinyl acetate), (Sigma-Aldrich, St. Louis, MO); DMEM/high
glucose with 10% FBS (Hyclone Laboratories; South Logan, UT). Tumor necrosis factor

(TNF)-a was measured using a commercial ELISA kit (eBioscience; San Diego, CA).

3.2.2 Fabrication of films
A 40% wi/v aqueous solution of structural polymer PVP was mixed with ethanol at

1:1 v/v (PVP solution to ethanol), followed by the addition of 50% v/v propylene glycol as
a plasticizer. Concurrently, a 2% wi/v aqueous solution of mucoadhesive polymer CMC
was prepared. Pure drug or drug solution was added to the combined PVP and CMC
polymer solutions, thoroughly mixed using heavy duty rotator at high speed (Roto Torque,
Cole Parmer, Chicago, IL), and left overnight at 43°C to remove bubbles. The polymer
solutions were cast in Teflon dishes 50 cm? in area and dried at 60°C for 8 hours, and stored
in desiccators until used. Mass and thickness of samples (diameter, 1 cm unless otherwise

noted) punched from random points (n>10) of films were measured to ensure uniformity.

3.2.3 Methods of loading imiquimod
Imiquimod was loaded into polymer solutions by four methods. The first method

used sonication (ultrasonic processor at an amplitude of 30 W) to disperse the imiquimod
in the CMC solution before it was combined with the PVP solution. The second method

solubilized imiquimod in linoleic acid (10 mg/mL) and mixed it with CMC solution and
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then with PVP solution. The third method used HPBCD to form complexes with imiquimod
by co-evaporation (51). In brief, separate solutions of aqueous HPBCD and drug dissolved
in methanol (0.46 mg/mL) were mixed at a 1:1 molar ratio and shaken (150 rpm) at 43°C
for 24 hours. Half of the methanol was evaporated from this solution until near-saturation
(before complexes precipitated) and poured into the PVP-CMC polymer solution. The
remaining methanol was evaporated by drying at 60°C. The fourth method dissolved
imiquimod in 3:7 v/v acetate buffer (pH 4.0, 100 mM):methanol and mixed it with the
polymer solution. The amount of drug loaded in all films was 18 mg, unless otherwise

noted.

3.2.4 Characterization of HPBCD-imiquimod complexes

3.2.4.1 Phase solubility
Phase solubility studies (52) were conducted to determine the association constant and

favorable molar ratio for complexes formed between HPBCD and imiquimod. An excess
amount of drug was added to increasing molar concentrations of completely dissolved
aqueous solutions of HPBCD and was incubated at 50°C with shaking at 180 rpm for 100
hours. Undissolved drug particles were filtered (0.45 um) from the solutions, and the
filtrate solutions were analyzed by UV absorbance at 244 nm. The shape of the graphed
relationship between concentration of a guest molecule and HPBCD (Figure 3.1) was used

to determine the apparent molar ratio of imiquimod and HPBCD complex formation.

The association constant of the complex (1:1) was then calculated using the following

formula

kyy = ——2B__ [Eq. 1]

s(1-slope)’

where s represents intrinsic solubility (solubility of imiquimod without cyclodextrin = 0.1
mM; (52). The aqueous solubility of these mixtures was used as a criterion for selecting

the best method of forming complexes.
3.2.4.2 Differential scanning calorimetry (DSC)

Formation of HPBCD-imiquimod complexes was confirmed by DSC analysis.
Samples (1-3 mg) of pure imiquimod, lyophilized HPBCD, physical mixture of lyophilized
HPBCD and imiquimod, and lyophilized HPBCD-imiquimod complex (1:1) were heated
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from 30°C to 300°C at a rate of 10°C per min. Samples were hermetically sealed in pin-
holed aluminum containers and ran with an empty aluminum container as blank in a
differential scanning calorimeter (DSC Q 200, TA Instruments, Newcastle, DE). The
environment was maintained inert with the presence of nitrogen gas at flow rate of 50

mL/min.

3.2.5 pH of films formulated with acetate
Because residual acid from the formulations with acetate buffer could irritate and

damage normal mucosal cells, the pH of the mucoadhesive films and the release
supernatants was measured. The surface pH of the films was determined by incubating
samples 1.4 cm in diameter on 2% (w/v) agar plates. Because mucoadhesive films eroded,
their surface pH was measured with pH strips at predetermined intervals up to 12 hours.
For release supernatants, samples were dissolved in 1 mL of simulated saliva (SS; 16 mM
Na;HPO4, 1.3 mM KH2POg4, 136.9 mM NaCl, pH=6.75; (53). Solution pH was measured
by both a pH meter and pH strips after 6 hours, when the films had been completely
dissolved.

3.2.6 Release studies
Samples punched from random points of cast films were attached to the wall of 6-

mL polyethylene vials so that the release of drug could be limited to only one side. These
samples were immersed in 6 ml of SS and incubated at 37°C with shaking at 150 rpm.
Supernatants were collected and stored at predetermined intervals and were then replaced
with fresh SS. Concentrations of imiquimod released into the supernatants were measured
by using fluorescence at an excitation wavelength of 250 nm and an emission wavelength
of 340 nm. Samples of all film types had equal drug loading (280 pg) to ensure uniform

comparison of their release profiles.
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Conc of guest molecule (M)

Conc of cyclodextrin (M)

Figure 3.1 Phase solubility diagrams corresponding to various types of complex formation.
Ap, guest molecule binding to cyclodextrin with molar ratio greater than 1; A, guest
molecule binding to cyclodextrin at 1:1 molar ratio; An, not clearly understood; B,
dissociation after reaching saturation. Adapted from (52).
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3.2.7 Effect of residual water content of films on drug release
To assess the effect of alterations in residual water content on drug release, studies

were conducted on films obtained at various stages of drying. Samples (HPBCD-
imiquimod formulations were punched during the process of drying at 6 hours (under-
dried) and 8 hours (normal). Release studies were performed according to the procedure
described previously. Residual water content of films was determined by drying the

obtained films at 60°C to a constant mass for an additional 24 hours.

3.2.8 Backing layer
PEVA films were prepared by casting 10% w/v PEVA in toluene into Teflon

dishes. The dishes were then dried at 30°C for 48 hours in sealed containers so that cracks
in the films could be avoided by slowing the evaporation of the solvent. Bilayered films
were subsequently prepared by casting mucoadhesive polymer solution onto freshly cast
PEVA film and drying it at 60°C.

Bilayered film samples 1.5 cm in diameter were incubated in 5 mL of SS (37°C,
150 rpm). The interface of the mucoadhesive component and the PEVA backing was
examined visually for up to 6 hours while being shaken in SS so that any detachment caused
by time and erosion could be detected. Samples were also collected at regular intervals and

examined qualitatively so that detachment between both films could be assessed.

The permeability of imiquimod through the PEVA backing layer was determined
by using a Franz cell apparatus. Samples with a diameter slightly larger than that of the
Franz cell were punched from a bilayered acetate formulation film. The sample was
oriented so that the backing layer faced the receptor compartment and the mucoadhesive
side faced the donor compartment. After SS was added to the receptor and donor
compartments, the Franz cell was incubated at 37°C overnight with shaking (150 rpm). The

release of imiquimod into the receptor compartment was analyzed after 24 hours.

3.2.9 Ex vivo mucoadhesion time and effect of thickness
Film samples (n=5) punched from drug-free bilayered films and Aldara cream of

similar mass were attached/spread to/on the mucosal surface of pre-hydrated (50 pL SS)
porcine buccal tissue. Tissue samples were attached to a glass slide with cyanoacrylate

glue. The glass slide was fixed to the moving actuator of a BOSE ELF3300 mechanical
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testing system and allowed to move up and down into 700 mL of SS at a rate of 18 cycles
per min. The patch was completely immersed in the buffer solution at the lowest point and
was out of the solution at the highest point. The time at which the backing layer completely
detached or cream was completely washed off from the tissue was recorded as the ex vivo
mucoadhesion time. In addition, thicker (0.39 mm) films were also prepared and were
compared with the thinner (normal; 0.30 mm) films so that the effect of thickness on

mucoadhesion time could be assessed.

3.2.10 Bioactivity assay
Mucoadhesive films loaded with imiquimod by formulation with acetate buffer

were selected for bioactivity testing. The bioactivity of imiquimod in release supernatants
was assessed by determining the production of TNF-a by RAW 264.7 cells (TIB-71;
ATCC, Manassas, VA) when exposed to imiquimod. RAW 264.7 cells were allowed as
many as 5 passages before being used in this assay. Cells were suspended in DMEM/high
glucose medium at 1x10° cells per mL and were seeded into 24-well plates. They were
allowed to equilibrate for 20 hours before the addition of sterile-filtered samples (60ul).
The resulting concentration of imiquimod in wells was 5 pg/mL. Cells were again
incubated for 12 hours in a humidified incubator at 37°C and 5% CO>. The concentration

of secreted TNF-a was then measured with a commercial ELISA kit.

3.2.11 Statistical analysis
All experiments were conducted in triplicates and were repeated at least once so

that the reproducibility of results could be demonstrated. The results were expressed as
means + standard error of the mean. Although unpaired two-tailed Student t-tests were used
to compare the instantaneous release of drug by dried and normal films, ANOVA with the
Tukey post hoc test was used to compare instantaneous drug release across the various

formulations. Results were considered statistically significant at the level of p<0.05.

3.3 Results

3.3.1 Morphology and characteristics of mucoadhesive films
Translucent and flexible films were peeled from Teflon dishes, except for those

prepared with linoleic acid (Figure 3.2). Films prepared with linoleic acid were tacky,
shrunken, and nonuniform, and their color became slightly yellow during the process of

drying at 60°C. Films formulated with acetate buffer were also more adherent than the
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sonication and HPBCD films. Increased drying time resulted in brittleness and shrinkage

of all types of films.

The addition of acetate buffer (pH=4.0) did not render either the films or the release
supernatants acidic (data not shown). The surface pH of films on the agar surface and the

pH of release supernatants ranged from 6.8 to 7.0 during the entire process of bioerosion.

3.3.2 Characterization of HPBCD-imiquimod complexes

3.3.2.1 Phase solubility studies
The amount of imiquimod incorporated into complexes with HPBCD increased

linearly with increasing concentrations of cyclodextrin. A plot of imiquimod concentration
as a function of cyclodextrin concentration showed AL type behavior (Figure 3.3), a finding
suggesting a 1:1 interaction between HPBCD and imiquimod. The association constant of
these complexes was 23.3 + 1.8 M, and the maximum solubility of the 1:1 complexes was
100 + 5 pg/mL.

3.3.2.2 Differential scanning calorimetry

The DSC thermogram of imiquimod was typical of a crystalline anhydrous
structure with a sharp melting endothermic peak at 299°C. The thermogram (Figure 3.4) of
HPBCD showed a broad endothermic peak from 30°C to 130°C (54, 55). This characteristic
peak of HPBCD was also observed in thermograms of physical mixture and complex. The
thermogram of imiquimod-HPBCD complexes shows the complete absence of the
characteristic endothermic drop at 299°C suggesting the formation of imiquimod- HPBCD
inclusion complex. However, the characteristic endothermic peak of imiquimod was
shifted towards lower temperature 263°C with reduced peak intensity in the thermogram

of physical mixture as observed in other studies (55-58).

3.3.3 Release of imiquimod
Drug release from films prepared with linoleic acid was not studied because of their

non-uniformity. Sustained release was achieved with films prepared with the other three
formulations (Figure 3.5a). All films demonstrated a small burst at 40 min followed by a
sustained release for as long as 2 hours. After a small increase at 140 to 160 minutes, the
release continually decreased thereafter. All films began disappearing from the vial walls

at 140 to 180 minutes. The amount of drug released from acetate formulation at 20, 40, and
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60 min was significantly higher than the amount released from sonication and cyclodextrin
formulations (p<0.05). There was no significant difference in drug release between the
sonication and cyclodextrin formulations. Although the amounts of drug released differed,
the general pattern of drug release was similar.

The cumulative release of imiquimod showed that although 68% of drug was
released from acetate formulation films, only 43% was released from the sonication
formulation films and only 38% of drug was released from the cyclodextrin formulation
films (Figure 3.5b). Cumulative release profiles of all films were linear; the coefficient of
variation (r?) ranged from 0.96 to 0.99, a finding strongly suggesting zero-order Kinetics.
Release data were also further analyzed according to the Korsmeyer-Peppas equation (45).
The value of n was 0.89 for the acetate formulation, 1.37 for the cyclodextrin formulation,
and 1.66 for the sonication formulation, a finding suggesting drug release by Super-Case

Il relaxation.
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Figure 3.2. Representative appearance of cast PVP-CMC films. Acetate buffer, sonication,
and HPBCD formulations were translucent (A), whereas films containing linoleic acid

turned yellow and became nonuniform upon drying (B).
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Figure 3.3. Phase solubility studies of 1:1 HPBCD-imiquimod complexes showing
concentration of imiquimod incorporated into complexes as a function of cyclodextrin

concentration. Data are shown as means + standard error (n>3).
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Figure 3.4. DSC thermograms of pure imiquimod, cyclodextrin, physical mixture of

imiquimod and cyclodextrin, and imiquimod-cyclodextrin complexes.

27

www.manharaa.com




Imiquimod released (ug)

Percent of total Imiquimod released

w
o

N
(62}

N
o

=
a1

=
o

(0]
o

~
o

D
o

al
o

D
o

w
o

N
o

[E=N
o

o

@ Sonication

A Cyclodextrin

1 W Acetate buffer
t % :
_ } * i 2 i ? )
A } Q
; -
0 50 100 150 200 250
Time (mins)
i B # Sonication
. [ | -
| A cyclodextrin m
o
i . A i
- : !
0 o §
: n i £
B .
i i R
| ?
. g ¢
0 5|0 160 1E|30 260 250
Time (mins)

Figure 3.5. A) Instantaneous and B) cumulative imiquimod release profiles for films loaded

with different methods. Data are shown as means =+ standard error (n>3).

28

www.manharaa.com



3.3.4 Drug distribution
Films had an average mass of 21.6+1.69 mg and an average thickness of 0.23+0.020

mm, regardless of differences in loading and formulation. The average amount of drug
released from samples randomly punched from the cast films was 139+21 pg for sonication
formulations, 113+8 ug for cyclodextrin formulations, and 191+16 g for acetate buffer
formulations; the differences in these amounts were statistically significant (p<0.0027).
Although sonication formulations exhibited a coefficient of variation (CV) of 15.7%, the
drug was more uniformly dispersed in the other two formulations (CV of cyclodextrin
formulations, 7.7%; CV of acetate buffer formulations, 8.5%).

3.3.5 Effect of residual water content of films on drug release
The residual moisture content of under-dried films (6 hours) was 52+1.13%

compared to 32+2.13% in normal (8 hours) films. Film samples obtained after under-
drying for 6 hours at 60°C eroded faster and did not provide sustained release for extended
periods (Figure 3.6). They were also softer, tackier, and more delicate than normal films.
Samples collected from these films exhibited an initial burst at 20 minutes followed by
sustained release for 1 hour and the release of continually decreasing concentrations of
drug thereafter. This finding was in contrast to findings related to normal films, which
exhibited an initial burst at 40 minutes and maintained sustained release for 2 hours (Figure
3.6).
3.3.6 Backing layer

PEVA films 100 to 120 um thick were formed. Thinner films 50 um thick were
also made by casting a smaller volume of PEVA-toluene solution, but the resulting films
were too weak to withstand handling. No difficulty was encountered in peeling the
bilayered films (Figure 3.7) and punching out samples. Visual examination and qualitative
handling of these films when dissolved in simulated saliva showed that the backing layer

was firmly attached to the mucoadhesive layer throughout the erosion process.
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Figure 3.7. Representative scanning electron micrograph showing cross-section of a
bilayered mucoadhesive film. The 900-um-thick mucoadhesive component was backed by
a 100-um-thick PEVA layer.
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The PEVA backing layer was impermeable to drug and was successfully used to
limit the transport of drug to one direction. At 24 hours, the mucoadhesive component of
bilayered films was completely dissolved into the simulated saliva present in the donor
chamber of the Franz cell apparatus. However, the concentration of imiquimod in the
receptor chamber was only 2% of the amount of drug found in the donor chamber, a finding

suggesting the impermeability of the PEVA.

3.3.8 Ex vivo mucoadhesion time and effect of thickness
The average thicknesses of the two types of bilayered films tested were 0.30 and

0.39 mm. Both types of mucoadhesive films demonstrated their adhesiveness to buccal
mucosa tissue. The ex vivo mucoadhesion time of the films was 10.45+1.8 for the thinner
films and 5.95+0.7 hours for the thicker films; this difference was statistically significant
(p<0.01). In contrast, 90% of Aldara cream was completely washed off within an hour

showing the advantage of using mucoadhesive films.

3.3.9 Bioactivity assay
The amount (60ul) of sterile filtered supernatants added was equal to 12% of the

medium. Hence as this exceeds normal 2% of foreign substance, toxicity of supernatants
was analyzed with MTTS assay (results not shown) and no significant difference in activity
of cells was observed. Imiquimod released into simulated saliva during film erosion
stimulated the secretion of more than 1000 pg/mL of TNF-a from macrophagic (RAW
264.7) cells (Figure 3.8). There was no significant difference in the amounts of secreted
TNF-o between the release supernatants from drug-loaded mucoadhesive films and pure
drug solutions. No significant difference in the amounts of secreted TNF-a was observed
between controls, blank solution, and blank films; this amount was less than 100 pg/mL.
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Figure 3.8. Amount of TNF-a produced by RAW 264.7 cells when induced by imiquimod
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3.4 Discussion
Several drugs and biomolecules are being developed or investigated for use as

chemotherapy for oral dysplasia (44). Compared with traditional systemic delivery, local
delivery of such drugs can increase treatment effectiveness and avoid adverse effects. The
versatility of mucoadhesive films designed in this work allows the use of nearly any
biomolecule and could be used for several other applications in which localized modulation
of oral cell and tissue responses is necessary. The system is equally adaptable to any
mucosal surface, and, furthermore, the mechanical flexibility of films allows the treatment
of nonuniform tissue defects, makes their application simpler, and enhances the release of
bioactive agents to the intended site of action.

Several mucoadhesive drug delivery systems are being prepared and used for all
types of mucosa, including gastrointestinal, vaginal, buccal, nasal, and ocular applications
(4). Some of the most common polymers used in mucoadhesive systems are Carbopol® and
its variants, sodium carboxymethylcellulose, hydroxypropylcarboxymethylcellulose, and
polycarbophils (4). Although several mucoadhesive polymers exist, various groups have
attempted to form blends of polymers that can improve film-forming properties and tensile
properties and can alter drug release mechanisms and time of bioerosion (4, 59-61). A
blend of PVP and NaCMC was selected for the current application (15). Although PVP
was chosen for its film-forming ability, it also has adhesive power comparable to that of
the mucoadhesive polymer NaCMC (53).

Off-label use of imiquimod in the treatment of dysplastic lesions involves the use
of commercially available Aldara cream, applied 3 times per week for 8 to 12 weeks (8,
50, 62). Although overnight application of cream on the site may work well for skin cancer,
the cream may not remain in the oral cavity for more than an hour. This problem can be
overcome by the mucoadhesive films described here, which had an erosion time of 4 hours.
The use of these films, therefore, can avoid the washing away of drug, increase residence
time, enhance bioavailability, and provide better control of drug release.

The drug amounts chosen for loading into mucoadhesive films were based on the
suggested dose of commercially available Aldara cream: 0.625mg/cm?. However, the
permeability of various drugs through the buccal mucosa is at least 4 to 4000 times more

than the permeability through the skin (63). Although the required dosage for the buccal
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mucosa will ultimately be determined by animal and human trials, the development of the
mucoadhesive film formulations described here was planned to enable the delivery of
adjustable drug doses.

It is common practice to add drug directly to polymer solutions when drug-loaded
films are formulated by the solvent casting method (13-15, 64). However, achieving
uniformity in drug distribution when very hydrophobic drugs, such as imiquimod, are
added to highly viscous hydrophilic polymer solutions can be challenging. Hence, this
study evaluated various methods of loading imiquimod to suit various requirements, e.g.,
maximum loading and release Kinetics. In a first attempt at achieving uniformity, polymer
solutions were sonicated after the drug was added. Although this method of loading was
easy to perform, the physical distribution of imiquimod into highly viscous PVP and CMC
solution may be problematic when the process is scaled up. This finding is also supported
by CV analysis of drug loading in the films: the films formulated by sonication had a CV
of 15, which was twice that for the films formulated with cyclodextrin and acetate buffer.
Linoleic acid, because of its high solubility for imiquimod (17 mg/mL; (65) and its
similarity to the fatty acid oleic acid used in the original Aldara cream, was chosen as the
next step for solubilizing imiquimod and mixing it with polymer solutions. The films
formulated with linoleic acid were nonuniform, and the oxidation of linoleic acid during
drying resulted in a rancid odor and possible degradation into byproducts. The production
of these metabolites may interact with the drug and change its properties. In addition,
oxidized linoleic acid metabolites activate TRPV1 channels and cause pain in rodents (66).

Cyclodextrins, cyclic oligosaccharides, have been widely used for the past 30 years
as drug carriers that solubilize hydrophobic drugs (67, 68). The hydrophobic cavity
surrounded by highly hydrophilic sugar molecules helps in the reversible binding of
insoluble drugs and the formation of complexes (69). Although addition of di- or tri-block
copolymers (such as the PEO-PPO-based Pluronics) could enhance dispersion of
hydrophobic drugs, the number of polymeric components that could affect the erosion and
release profiles was minimized. Although a number of natural and derived cyclodextrins
are available, 2-hydroxypropyl-p-cyclodextrin was chosen for this project because of its
low toxicity, high solubility, and wide industrial use (68, 70). The formation of imiquimod-

HPBCD complexes was confirmed by DSC. Broad endothermic peak ranging from 30-
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130°C observed in thermograms of pure cyclodextrin, complex and physical mixture was
observed in previous studies and attributed to dehydration!®!°, The endothermic peak of
imiquimod was observed to be at little higher temperature than its theoretical melting point
292-296°C as provided by manufacturer. The absence of this endothermic peak in
imiquimod-HPBCD complex plot implies changes in properties caused by the formation of
complexes. The change in peak of imiquimod in the physical mixture may be explained by
several reasons, such as melting point depression due to presence of cyclodextrin and its
behavior as heat sink(56), amorphization of drug during the DSC run in the presence of
amorphous carrier(57), and decreased intensity due to low imiquimod:cyclodextrin content
(16% of total weight). The shape of the phase solubility plots again confirmed the
formation of imiquimod-HPBCD complexes and suggested that imiquimod and HPBCD
were more likely to form 1:1 complexes (52). Although the association constant was
23.3+1.7 M7, the final solubility of imiquimod (100 pg/mL) may not be sufficient to
achieve clinically relevant dosages (i.e., 0.625 mg/cm?, as recommended for Aldara) in the
mucoadhesive film. This problem in drug-loading capacity was solved by the use of a
mixture of acetate buffer (pH 4.0, 100 mM) and methanol (3:7); this mixture results in
imiquimod solubility of 2.3 mg/mL. The concern that a low pH may irritate the mucosa
was eliminated by the results of pH studies of the surface and the release supernatant, as
previously discussed.

The high solubility of imiquimod in acetate buffer facilitated greater release (68%)
of drug from polymer matrices into simulated saliva than that achieved with the other
formulations. This finding was supported by a small experiment demonstrating that the
addition of acetate buffer to release supernatants from other formulations (1:1 ratio)
increased the measured drug concentrations (data not shown). This finding may be
attributed to the hydrophobic nature of the drug, which reduces release from polymer
matrices into an aqueous environment (simulated saliva). The increase accounts for the
difference between acetate buffer formulations and other formulations. Regardless of the
loading method, the general kinetics of imiquimod release remained similar, e.g., a small
initial burst at 40 minutes followed by sustained release for 2 hours and then a small late
burst at 140 to 160 minutes. The late burst may be attributed to disintegration of the

swollen film into fragments, following which an increased surface area exposed to SS
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promoted faster release of drug. This observation suggests that the release of drug was
governed by the properties of the film polymer rather than by the loading methods. In
accordance with the Korsmeyer-Peppas model(45), Super-Case 1l relaxation was seen, and
this relaxation reflects chain disentanglement and swelling of the hydrophilic films, leading
to accelerated release. Although the uniformity of drug dispersion was higher with both
cyclodextrin and acetate buffer formulations than with sonication formulations, films
formulated with acetate buffer permitted the highest drug loading and the release of more
drug because of their increased solubility; therefore, these films had an advantage over the
other films.

The main purpose of solvent casting is to evaporate the solvent (water, in this
project) during the drying step. The content of water remaining in a film depends on the
drying time and the temperature used. Mucoadhesive film polymers hydrate on contact
with water, and this hydration results in swelling followed by bioerosion. The presence of
more water in the film accelerates the hydration of polymer chains deep in the film and
leads to faster dissolution. The drying experiments showed that removing more water may
have decreased the rate of hydration, thereby leading to slower erosion and more sustained
release. The slower hydration of films may be attributed to shrinkage of gaps between
polymer chains and tighter arrangement of macromolecules during the drying process.
Even though films dried for more than the normal time may exhibit extended release
profiles, they can be difficult to handle because of brittleness and excessive shrinkage,
which frequently cause the films to curl.

The delivery system described here is intended to deliver drug locally to dysplastic
mucosal lesions. The presence of a backing layer can limit the transport of drug in one
direction, toward the mucosa, and can avoid direct absorption in the gastrointestinal tract.
The backing layer can also improve the handling properties of the film, avoid shear forces
caused by other moving parts of the oral cavity, and avoid adhesion to those other parts,
such as the tongue and teeth. Treating lesions with an occlusive barrier can significantly
reduce treatment periods (71, 72). In this study, parameters such as temperature, volume
of toluene, and casting containers used in the making of PEVA films were optimized
empirically. Any change in these parameters resulted in cracking and shrinkage of the

films. Tightly sealed containers decreased the rate of evaporation of toluene, thereby
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allowing more time for polymers to reach equilibrium and to be properly distributed so as
to form uniform films. Although films using 2.5 mL of toluene and 10% PEVA (w/v) were
difficult to handle, the use of more toluene (such as 5.0 mL of toluene and 5% PEVA[w/V])
resulted in cracks. The presence of more toluene led to more evaporation, resulting in stress
concentrators, shrinking, and cracking of films.

The properties of PEVA film did not change during the process of drying at 60°C.
The amount of drug (2%) found in the receptor compartment showed the impermeability
of PEVA. The small amount of drug released might be due to leakage of drug from the film
edges that were compressed between the donor and receptor compartments under heavy
force while the Franz cells were set up.

The ex vivo mucoadhesion time results confirmed the films’ adhesive properties
and their potential and advantages than Aldara cream to be retained on the buccal surface
while in the dynamic oral cavity for long-term release of drug. Mucoadhesive polymers
swelled substantially on contact with water and gradually began eroding with time. As the
mucoadhesive polymers completely eroded, the nonadherent PEVA backing layer
detached from the tissue. In contrast to expectations, decreased mucoadhesion time with
increasing thickness may be attributed to excessive swelling of films. Swelling of films on
contact with water increases the thickness of films as much as five fold (data not shown).
Hence, the thicker films are more prone to shear and gravitational forces and thus may
erode more quickly.

The current developed mucoadhesive system also involved use of ICH class 3
solvents, such as methanol and toluene. Although the amounts of these solvents were less
than guidelines prescribed by FDA (38), their use may be decreased or replaced by some
class 2 solvents. Imiquimod is poorly soluble in other class 2 solvents such as ethanol, but
its solubility in only acetate buffer and 1:1 (methanol: acetate buffer) is 1.3 and 1.9 mg/ml,
respectively. Thus, use of methanol may be decreased or avoided depending on the required
drug loading. As a class 2 solvent, residual toluene in PEVA films should be minimized,
such as by vacuum drying. The polymer used in the present studies had 18 wt% of vinyl
acetate. Toluene may be replaced by the class 3 solvent methylethylketone using PEVA

with an increased the percentage of vinyl acetate (from 18% to 40%).
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3.5 Conclusion
The mucoadhesive drug delivery system described here offers a noninvasive and

local approach to the delivery of an immune response modifier that may be effective in
treating precancerous lesions. This drug delivery system was loaded with imiquimod,
which is approved for the clinical treatment of external genital warts, basal cell carcinoma
(skin cancer), and actinic keratosis and has been used off-label for mucosal disorders.
Problems associated with the hydrophobic nature of imiquimod and its presence within
hydrophilic polymers and aqueous environments were solved by the use of films
formulated with acetate buffer. The bioavailability of imiquimod was not affected by its
entrapment in a mucoadhesive polymer matrix or by all of the necessary manufacturing
steps. Sustained release of the drug was achieved for three hours in vitro; thus, this delivery
system can increase the availability of drug throughout the treatment process. Finally, a
complete bilayered film, consisting of a drug-loaded mucoadhesive with a backing layer,
can avoid loss of drug through the oral route and can protect the film from saliva and from

the shear forces produced by the tongue, and teeth throughout the bioerosion process.

39

www.manaraa.com



Chapter 4 Competing Properties of Mucoadhesive Films Designed for Localized
Delivery of Imiquimod

4.1 Introduction
Mucosal surfaces composed of epithelial cells and connective tissues are found in

many regions, such as the oral cavity, nose, eyes, and gastrointestinal, respiratory, and
reproductive tracts. In addition to their natural role in protecting underlying tissues, the
potential for absorption of molecules via the rich vasculature of the oral cavity makes this
an attractive route for drug delivery. Delivery through oral mucosa is rapid and avoids first
pass metabolism of drugs (4). Furthermore, oral surfaces offer easy access, stable pH of
6.75 compared to the stomach and intestines whose pH ranges from 2 to 7, and rapid cell

recovery (10).

Several mucoadhesive delivery systems have been developed for targeting mucous
membranes encompassing buccal, gastrointestinal, vaginal, ocular, nasal and sublingual
surfaces (4). Although some mucoadhesive formulations were developed in 1947 (3), this
field grew significantly starting in the 1980s (3, 10). The ability of these systems to adhere
to mucosal surfaces increases residence time, bioavailability, provides high flux of drug,
improves permeability, and retains structure of peptides and proteins (4). Commercialized
systems, such as BEMA® technology (Bio Delivery Sciences International) and trans-
mucosal films (Watson Pharmaceuticals), exist for systemic drug delivery but their fast

erosion times (15-60 min) are not appropriate for localized treatment of diseases.

Oral squamous cell carcinoma (OSCC) is malignant form of cancer affecting
squamous epithelial cells, which are present on all mucosal surfaces of the oral cavity,
pharynx, and trachea. Current treatments, such as surgical resection, results in loss of
tissue, which compromise normal function of the oral cavity (73). Radiation therapy of
oral cancers has 100% incidence of painful post-treatment oral mucositis (74).
Chemotherapy is associated with significant side effects such as myelosupression,
mucositis, and hair loss, due to delivery of drug to healthy, as well as cancerous, tissues
(13). A mucoadhesive system loaded with an immune response modifier, imiquimod, for

potential local treatment of precancerous oral lesions was developed previously (75). Use
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of this delivery system would offer advantages of a non-invasive approach and reduced

systemic effects of drugs.

Release of imquimod from mucoadhesive films containing polyvinylpyrrolidone
(PVP) as film forming polymer and carboxymethylcellulose (CMC) as adhesive polymer
was analyzed in earlier work (75). Formulations composed of 1:2 PVP:CMC were able to
achieve sustained release for 3 hrs in vitro. Other properties relevant for developing a
mucoadhesive system, such as adhesion strength, swelling, tensile properties and transport
kinetics, however, were not reported. The aim of the present studies was to characterize
these properties as a function of film composition and to subsequently investigate changes
in drug release profiles. A more complete understanding of PVP:CMC mucoadhesives

allows tuning of the system for desired drug delivery, adhesive, and mechanical properties.

4.2 Materials and Methods

4.2.1 Chemicals
Imiquimod (CalBiochem; White House Station, NJ) was incorporated into films

that consisted of two polymers, polyvinylpyrrolidone (PVP) K-90 (Spectrum Chemicals;
New Brunswick, NJ) and carboxymethylcellulose (CMC; sodium salt, medium viscosity;
Sigma, St. Louis, MO). Other chemicals and materials used were propyleneglycol, ethanol,
acetonitrile (ACN), trifluoroacetic acid (TFA), 2-hydroxypropyl-p-cyclodextrin (cell
culture tested; HPBCD), poly(ethylene-co-vinyl acetate) (18wt% vinyl acetate; EVA),
mucin from bovine submaxillary glands (Sigma-Aldrich; St. Louis, MO), and 15 mm Franz

diffusion cells (PermeGear, Hellertown, PA).

4.2.2 Fabrication of films
Mucoadhesive films were prepared as described previously (75). Briefly, the

following three solutions were prepared concurrently, thoroughly mixed, and left overnight
at 43°C to remove bubbles: 1) 40% w/v aqueous solution of PVP mixed with ethanol at
1:1 v/v and followed by addition of 50% v/v propylene glycol; 2) 2% w/v aqueous solution
of CMC; and 3) imiquimod solution (18 mg) using 2-hydroxy propyl-p-cylodextrin and
imiguimod complexes. The polymer solutions were cast in Teflon dishes and dried at 60°C
for a time specific to the particular type of film (further presented in section 2.3). The
obtained films were peeled from the dishes and stored in a desiccator at 20% relative
humidity for 24 hr before use. Film formulations with varying contents of PVP and CMC
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were prepared as shown in Table 4.1. Blank films were used for the mechanical, adhesion,
and swelling studies, while for release and transport studies, films were loaded with
imiquimod. Samples (diameter, 1 cm unless otherwise noted) were punched from random

points in the cast films for the following experiments.

4.2.3 Drying time
4.2.3.1 Time to achieve negligible water content.
In a pilot study, film solutions comprising 1:2 and 2:1 PVP:CMC were cast and

dried at 60°C until negligible change in weight of film samples (x3%) was observed. The
time required to reach this stage was recorded as steady state time (tst). Because the steady
state water content can vary for different ratios of PVP:CMC, the drying time to achieve

equivalent contents was next identified.
4.2.3.2 Time to achieve equivalent residual water content.

Next, polymer solutions of all types of films were cast in Teflon dishes and dried
at 60°C. Samples (n=3) were collected for each type of film at three specific time points
(tin; n=1,2,3) during the course of drying as shown in Table 4.2. After recording the weight
(W1) of the samples, they were stored in a desiccator (20% relative humidity) for 24 hr.
These samples were then returned to 60°C for the tst found in the pilot study (section
4.2.3.1), and the weights (W>) were recorded. The percentage change in water content was

calculated as:

. (W, — Wy)
% change in water content = —w x 100.
1

[Eq. 1]

For each film composition, one time point was chosen such that all film types had

equivalent water content.
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Table 4.1 Different formulations of mucoadhesive films tested.

Ratio of PVP:CMC
1:2 2:3 11 32 21

PVP (ml) 2 2.5 3 35 4
CMC (ml) 12 1125 9 75 6
Drying time (hr) 7 8 9 10 135

Table 4.2 Specific drying time check points for different mucoadhesive compositions.

Ratio of PVP to | 1:2 2:3 1:1 32 21
CMC

Drying times (hr)

5 6 7 9 13
6 7 8 10 14
7 8 9 13 15
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4.2.4 Tensile properties
Following removal from Teflon dishes, dog bone shaped (gauge width = 5mm,

gauge length = 10mm) samples were cut from each film and fixed between the grips of a
Bose ELF 3300 mechanical testing system. After preloading to 0.1 N, test specimens were
deformed at a displacement rate of 3 mm/sec (14, 76, 77). The recorded load and
displacement values were used to calculate the Young’s modulus, ultimate tensile strength

(UTS), and percentage elongation.

4.2.5 Adhesion studies

4.2.5.1 Pull-off adhesion
Porcine buccal mucosa was excised at a local slaughterhouse and frozen until use.

Mucoadhesive films were attached to the moving platen of the Bose ELF 3300 using
double-sided adhesive tape. Mucosal tissue was fixed to an acrylic base platen using
cyanoacrylate glue. Thawed tissue was hydrated using 100 pl of simulated saliva (78) (SS;
16 mM NaxHPOQOg4, 1.3 mM KH2PO4, 136.9 mM NaCl, pH=6.75) just before binding to a
mucoadhesive film. Films were adhered to tissue with a force of 10 N for 2 mins(79) to
ensure uniform binding and to imitate in vivo application of film to the specimen mucosa.
The film was then separated from the tissue at the rate of 0.1 mm/sec (79, 80). Care was
taken to use a new tissue location or new specimen for each pull-off test. Maximum
adhesive force per unit area and work of adhesion were calculated from the load and

displacement data.

4.2.5.2 Shear adhesion
Polycarbonate membranes (0.22um pore size) were coated with 4% wi/v bovine

mucin solution and dried at room temperature overnight (59). Mucous membranes and
mucoadhesive films were attached to separate glass slides using double-sided adhesive
tape. After prewetting with 20 pl of simulated saliva, the two slides were adhered such that
the mucoadhesive film and mucous membrane made contact under 0.5 N load for 5 mins
(53). The adhered glass slides were fixed between the tensile grips of the Bose ELF 3300,
and the slide bearing the mucoadhesive film was sheared away from the mucous membrane
slide at the rate of 0.1 mm/sec. As for the pull-off tests, maximum adhesive force per unit

area and work of adhesion were calculated from the load and displacement data.
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4.2.6 Drug release and erosion studies
Based on their tensile and adhesive properties, only the 1:2 and 2:1 PVP:CMC films

were further investigated. Samples were attached to the wall of 6 ml polyethylene vials to
limit release of drug to only one side. These samples were immersed in SS and incubated
at 37°C with shaking at 150 rpm. Supernatants were collected and stored at predetermined
intervals followed by replacement with fresh SS. Concentrations of imiquimod released
into the supernatants were measured using fluorescence spectroscopy at excitation and

emission wavelengths of 250 and 340 nm, respectively.

Cumulative release profiles of films were analyzed using the Korsmeyer-Peppas

mathematical model (45):

% = kt"
Mo,
where Mt /M, is the drug fraction released at time t, k is a constant depending on structural
and geometric characteristics of the system, and n is the diffusional coefficient related to
release mechanism. While n=0.45 indicates Fickian diffusion, 0.45<n<0.89 indicates non-

Fickian diffusion, and n>0.89 indicates case-2 relaxation.

Erosion (mass loss) studies were performed in a similar way. The initial sample
weight (W1) was recorded before the study, and final weight (W.) was measured after
drying the degraded samples at 43°C overnight. Mass loss was calculated and plotted
against degradation time.

4.2.7 Swelling studies
Two types of swelling studies were performed on 1:2 and 2:1 PVP:CMC films and

pure PVP and CMC films to further understand properties of the films.

4.2.7.1 Mass gain (conventional)
Films were attached to adhesive tape, which acted as backing layer, and incubated

in SS at 37°C. The dry weight (W1) was recorded before immersion. Samples were then
removed at predetermined intervals, blotted dry from the backing layer side, and the
weights were recorded as W». Films were compared based on the swelling index, which
was calculated as [(W2-W1)/W1]*100.
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4.2.7.2 Radial swelling
Agar plates were prepared by autoclaving 2% (w/v) LB agar in SS and then poured

into polystyrene dishes. The prepared agar plates were sealed and stored upside down in
the refrigerator for 2 days. After recording the initial diameter (D1) of mucoadhesive
samples, they were placed on agar plates. Diameters of samples were recorded as D:
following predetermined intervals of incubation at 37°C. The radial swelling index was
calculated as [(D2-D1)/D1]*100.

4.2.8 Transport Kinetics and permeability characteristics
Transport kinetics of imiquimod released from films were analyzed on porcine

buccal tissues that were frozen until use. Upon thawing, thin sections of 500um thick were
prepared using a sledge microtome to separate the underlying connective tissue from
epithelium and used immediately. The tissue sections were mounted in a Franz cell such
that epithelial side faced the donor compartment. Mucoadhesive samples were applied to
the mucosal surface of tissue contained in the Franz cell. After filling the receptor
compartment with 12 ml of SS, care was taken to ensure the tissue surface was always in

contact with the solution.

Supernatant was collected from the receptor compartment at predetermined
intervals and replaced with fresh SS. Acetate buffer (100 mM, pH 4.0) was freshly
prepared and added at a ratio of 50:50 (v/v) to all collected samples to solubilize drug
before measurement. Experiments were run for 24 hr, after which residual film was
solubilized completely in 50:50 acetate buffer:SS to quantify the remaining drug. Tissue
sections were also immersed overnight in 50:50 acetate buffer:SS to extract retained
imiquimod. The amount of drug in all samples was determined by reverse phase high
performance liquid chromatography (HPLC) using a Shimadzu Prominence system
equipped with a Phenomenex Cig column. The mobile phase used was 40:60 ACN to water
containing 1%TFA at a flow rate of 1 ml/min. Imiquimod was measured using a UV
detector at a wavelength of 242 nm.

Permeability and transport kinetics of control solutions (imiquimod solubilized in
acetate buffer) and imiquimod-loaded 1:2 and 2:1 films were compared. Care was taken to
ensure that mucoadhesive films and control solutions had equal amounts of drug (0.26 mg).

The cumulative amount of drug permeated through tissue per unit area was calculated and
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plotted as a function of time. Flux (Q) of drug was then calculated from the slope of the

linear portion of the curve.

4.2.9 Statistical analysis
All experiments were conducted in triplicate and repeated at least once to

demonstrate reproducibility of results. The results are expressed as mean + standard
deviation. While unpaired two-tail student t-tests were used to compare instantaneous
release of drug, degradation and swelling, ANOVA with the Tukey post-hoc test was used
for tensile, adhesive studies, and transport kinetics and permeability studies. Results were

considered statistically significant if p<0.05.

4.3 Results
4.3.1 Drying time
Film samples (1:2 and 2:1 PVP:CMC) were observed to lose water when dried for

extended periods of time. Although significant changes were observed through the first 5
hr, mass decreases slowed thereafter; negligible change (+3%) was observed between 11
and 24 hr for all types of films. Hence, 24 hr was chosen as the steady state drying time

point (Tst) at which minimal water content of films was achieved.

After determining that maximal water loss occurred by 24 hr, fresh mucoadhesive
films were prepared by drying for different times (tin). Samples were then punched and
dried again for 24 hr (ts;) to find the water content. Irrespective of film type, all samples
lost water, and as expected, the percentage change in water content decreased with
increased initial drying time (tin) (Figure 4.1). Based on these observations, drying times
for 1:2, 2:3, 1:1, 3:2, and 2:1 films were chosen to be 7, 8, 9, 10, and 13.5 hr, respectively,
to achieve a uniform water content of 39+2.5%. Smooth, bubble free, and flexible films of
each type were obtained after drying for their respective times. Tackiness of films
increased with increasing PVP content of films, which made handling slightly difficult.
4.3.2 Tensile properties

The stress—strain curves of all film types, except those with 2:1 PVP:CMC, showed
two slopes before failure (Figure 4.2a); the initial slope was used to calculate elastic
modulus. As shown in Figure 4.2b, both elastic modulus and UTS decreased significantly
(p<0.0001) with increasing PVP content. Elastic modulus of films ranged from 6.9+1.5 to
1.8+0.2 MPa and UTS ranged from 4.2+0.7 to 2.1£0.02 MPa for 1:2 and 2:1 films,
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respectively. Percentage elongation, however, significantly (p<0.0001) increased with PVP
content, ranging from 129.2+13.5 to 394+47.3 % for 1:2 and 2:1 films, respectively (Figure
4.2b). A detailed presentation of significant differences between each type of film is shown
in Table 4.3.

Films became soft, tacky and viscoelastic as PVP content increased. This
viscoelastic behavior was more evident in 3:2 and 2:1 film types in the form of strain
recovery. When films were elongated until just before breakage (x) and returned to half of
that elongated length (x/2), the films were observed to recover from this strain in less than

30 seconds (final length of films = initial length + x/2) as shown in Figure 4.3.

4.3.3 Adhesive properties
Detachment of samples in both pull-off and shear adhesion studies occurred only

at the interface between polymer and tissue/mucin. The average maximum adhesive
strength (force per unit area) required to detach mucoadhesive films from porcine buccal
tissue increased significantly with PVP content (p<0.0003) from 0.42+0.03 to 1.1+0.1
N/cm? for 1:2 and 2:1 mucoadhesive films, respectively (Figure 4.4a). Increasing PVP
content, however, did not significantly affect work of adhesion (Figure 4.4a). For shear
adhesion, both the maximum shear force and work of adhesion required to peel
mucoadhesive films from mucin-coated membranes significantly increased with PVP
content (p<0.0001) (Figure 4.4b). The maximum shear adhesive strength increased
(p<0.0001) from 1.7+0.25 to 5.6+1.4 N/cm? and work of adhesion increased (p<0.0001)
from 4.3+1.1 to 12.9+0.84 N/cm? for 1:2 and 2:1 mucoadhesive films, respectively. A
detailed presentation of statistically significant differences between each type of film is

shown in Table 4.3.
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Samples type and Drying time (hr)
1:2 2:3 1:1 3:2 2:1
5 6 7 6 7 8 7 8 9 9 10 13 13 14 15

% change in weight

-70

Figure 4.1. Percentage change in weight of mucoadhesive films at different initial drying
times. Data are mean + standard deviation (n>3). Initial drying times were chosen such

that all films had equal water content of 39% (red line).
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Table 4.3. Post hoc statistical results from the tensile and adhesion studies (Figures 2B

and 4).
Sample Modulus UTS % Max pull-  Max shear Shear
elongation off adhesive  work of

adhesive  strength  adhesion
strength

1:2vs 2:3 ns ns ns * ns ns

1:2vs 1:1 Fkk * * * ns ns

1:2 VS 21 *** ***x **%k ***x **%k **%k

2:3vs 1:1 *% ns ns ns ns ns

2:3vs 3:2 *x *x * ns ns ns

23 VS 21 **kk **kxk **k*k * **k* **

1:1vs 3:2 ns ns ns ns ns *x

11 VS 21 nS * **k*k * **k* **k*k

3:2vs 2:1 ns ns falaied ns *x ns

*ns = not significant (p<0.05); * = (p<0.05); ** = (p<0.01); *** = (p<0.001);
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Figure 4.2. A) Typical stress-strain curve of films with two different slopes. A

representative plot for a 1:2 PVP:CMC film is shown. B) Modulus, UTS, and percentage

of elongation of all mucoadhesive film compositions. Results of statistical analysis are

shown in Table 4.3. Data are mean + standard deviation (n>3).
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4.3.4 Drug release, erosion, and mathematical modeling
The 1:2 PVP:CMC films were able to achieve sustained release of imiquimod for

up to 3 hr with a burst at 160 min and continuously decreasing release thereafter (Figure
4.5). For 2:1 films, however, most of the imiquimod was released over the first hour, after
which release continually decreased over time (Figure 4.5). Cumulative release profiles
for both types of films coupled with their respective mass loss profiles are shown in Figure
4.6. For 1:2 PVP:CMC, the profile of drug release closely followed erosion of the films
(Figure 4.6a). The 2:1 films, however, began eroding early and eroded faster (Figure 4.6b);
their initial mass loss was greater than the percentage of drug released up to 40 min. In
addition, imiquimod release from 2:1 PVP:CMC films occurred faster than from 1:2 films.
Inconsistencies in the last few time points of the erosion experiment measurements were
attributed to difficulties in handling of the viscous and mostly eroded films. Mathematical
modeling of release profiles based on the Korsmeyer-Peppas equation showed ‘n” values
of 1.03 for 1:2 PVP:CMC films and 0.89 for 2:1 PVP:CMC films.

4.3.5 Swelling
Conventional swelling studies indicated rapid mass changes, which resulted in

indices reaching up to 500 and 200 for 1:2 and 2:1 PVP:CMC films, respectively (Figure
4.7A). The 1:2 PVP:CMC films swelling indices reached 200 in the first five min and 400
at 60 min. The rate of swelling subsequently decreased, and a further increase of only 100
was observed over the next 90 min. In contrast, 2:1 PVP:CMC films reached swelling
index of 200 by 40 min and started decreasing from 60 min by losing mass. Although both
types of films became extremely viscous and difficult to handle after 130 min, 1:2 films
maintained their integrity, unlike 2:1 films, which started eroding as observed visually.
Swelling indices of the films were significantly different (p<0.05 to p<0.001), except at the

first time point of 10 seconds.

In contrast to the conventional swelling studies, measurement of radial swelling on
agar showed that 2:1 PVP:CMC films swelled more than did the 1:2 PVP:CMC films
(Figure 4.7A).The swelling indices of both films were less than 100, but both films
continued to swell radially after 180 min, unlike the conventional mass gain studies in

which swelling plateaued and the samples began losing mass. At longer times, loss of the

52

www.manaraa.com



samples circular shape made further measurements difficult. Swelling indices of both films

were significantly different (p<0.05 to <0.0025), except at the first time point of 15 min.

Conventional swelling profiles for films containing only CMC showed a high index
of 3000 in 150 min with monotonically increasing swelling. Unlike CMC films, PVP only
films reached their maximum swelling index of 264 in 45 min and then quickly started
losing mass, being completely eroded by the end of 150 min (Figure 4.7B).

4.3.6 Transport Kinetics and permeability
Imiquimod in all samples was successfully separated from tissue particles and

polymer components using HPLC. While imiquimod had a sharp peak at the retention time
of 3.3 min, solubilized molecules of tissue had a broad peak 3.8 min; PVP and CMC were
found with the injection peak. Imiquimod was detectable within a linear concentration

range from 60 ng/ml to 7.8 pg/ml.

Transport of imiquimod through porcine buccal tissue into simulated saliva was
controlled by 1:2 and 2:1 mucoadhesive films. The average flux rates of imiquimod
through buccal mucosal tissue were 1.25+0.39, 1.11+0.12, and 4.98+0.91 pg/cm?/hr for
1:2 and 2:1 mucoadhesive films and the control solution, respectively (Figure 4.8A). The
mucoadhesive films significantly (p<0.01) decreased flux of imiquimod through tissue
compared to control solutions, while no significant difference in flux was observed
between 1:2 and 2:1 film types. Imiquimod retained in tissue after 24 hr increased with
the use of mucoadhesive films (30%) and was observed to be double the amount of
imiquimod retained from control solutions (15%) (Figure 4.8B). The amount of imiquimod
transported through tissue into simulated saliva was 3.5 fold higher for control solutions

compared to when films were used (p<0.001).
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Figure 4.4. A) Maximum pull-off adhesive strength (force/unit area) and work of adhesion
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and shear work of adhesion for films on mucin-coated membranes. Results of statistical

analysis are shown in Table 4.3. Data are mean + standard deviation (n>3).
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4.4 Discussion
Mucoadhesive films loaded with immune response modulators can provide a local

and non-invasive approach to treatment of oral precancerous lesions. Although previous
work (75) showed that 1:2 PVP:CMC mucoadhesive films lasted 4 hr submerged in sink
conditions in vitro and achieved sustained release for up to 3 hr, several other film
properties were not reported, such as adhesiveness of film to mucous surface, mechanical
properties for better handling and swelling, which determines the release mechanism. All
of these characteristics will play key roles in the design of a successful bioerodible,
mucoadhesive drug delivery system. The versatility of the present delivery system allows

modification and tailoring of these properties by simply changing composition of the films.

The film fabrication process involves drying polymer-drug solutions at 60°C to
evaporate the remaining solvent, mainly water. The amount of solvent retained in the films
depends on the drying time and film composition. Previous work (75) with this delivery
system showed that residual water content significantly affected the drug release profile.
Qualitative observation of films also showed differences in tackiness, strength, and
flexibility with varying water content. Hence, it was important to control this variable for
an accurate comparison of other film properties. Based on an analysis of mass changes as
a function of time, the drying time for all film compositions was selected to maintain
around 39% of residual water content in films. Further drying of films resulted in loss of
flexibility and brittleness, and under-drying of films results in a soft gel that was difficult

to handle.

Even though mucoadhesive films do not have load-bearing responsibility,
understanding their tensile properties may be useful for better handling of films during the
manufacturing process, while being applied to a mucosal surface, and when exposed to
potentially demanding in vivo conditions. Selection of 3 mm/sec deformation rates was
based on previous work with mucoadhesive films in which deformation rates ranged from
1to 5 mm/sec (14, 76, 77). Modulus (1.8 to 6.8 MPa) and tensile strength (2.1 to 4.2 MPa)
of the PVP:CMC films decreased with increasing PVP content, which was contrary to
results expected from PVP being considered the film forming polymer (15). While the
observed tensile strength and modulus were comparable to mucoadhesive films prepared

from chitosan/copolymer of polyvinyl alcohol (PVVA)/polyethylene glycol (PEG) (UTS =
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3.5 to 5.4 MPa and modulus = 2.7 to 7.5 MPa) (16) and copolymer of methylvinylether
and maleic anhydride (UTS = 2.77 MPa) (14), the UTS of PVP:CMC was 10 times lower
than that for films made of hydroxypropylcellulose (20 to 110 MPa) and
hydroxypropylmethylcellulose (40 to 150 MPa). The present mucoadhesive films
exhibited substantial elongation before failure (150-300%) compared to 12-35%, 55-125%,
and 66-130% reported for hydroxypropylcellulose, hydroxypropylmethylcellulose, and
chitosan/PVA/PEG films, respectively (16, 81).

Pull-off adhesion studies were performed on porcine buccal mucosa because of its
resemblance to human buccal mucosa in terms of ultrastructure and composition (12, 82).
An initial force of 10 N was applied on films to imitate pressing a film onto a patient’s
cheek by a finger, as well as being based on similar work (79). Substantial variability was
observed during pilot testing of multiple samples on a single tissue specimen. This was
likely due to microscale adhesion of polymers on tissue and/or components of the tissue
surface being modified with each test. Hence, care was taken to use fresh location on same
tissue or a fresh tissue for each sample to reduce variability. Comparison of the present
results with existing literature was difficult due to different experimental conditions, such
as contact force, deformation rate, and contact time. The measured mucoadhesive forces,
however, were comparable to several blends of polymers (15, 16, 83, 84). While the
adhesion force increased from 0.41 to 1.06 N/cm? with increasing PVP content, several
other polymer blends, including chitosan/PVA/PEG ranged from 0.33 to 0.41 N/cm? (16);
copolymers of acrylic acid and 2-ethylhexyl acrylate ranged from 0.033 to 0.065 N/cm? at
different contact speeds and contact times (83); and plain films of hydroxyethylcellulose,
chitosan and polyvinyl alcohol recorded 0.58, 0.88 and 5.11N/cm?, respectively (84).

Shear stresses from the tongue, gums, and saliva may be more prominent than pull-
off forces under actual oral conditions. The Wilhelmy plate method is commonly used to
measure shear adhesion of polymers, often with mucin solution instead of tissues (4).
Buccal mucosa is covered by mucus, which contains 4% mucin (glycoproteins) (11).
Several studies have proposed that the rate of diffusion of polymer chains into mucus and

their interactions with mucin are the main factors responsible for mucoadhesion of
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polymeric films (2, 10, 11). Hence, 4% bovine mucin-coated membranes were used as

replacement of porcine buccal tissues for shear adhesion studies.

Variables, such as contact force, contact time, and amount of buffer used to hydrate,
play important roles in the performance of films in shear adhesion studies (53, 83).
Consequently, the parameters used for the adhesion experiments were based on pilot
studies (data not shown). The difference in contact forces for pull-off and shear adhesion
was primarily attributed to the change of substrate. Furthermore, films were observed to
tear during shear adhesion studies following application of 10 N contact force rather than
desired sliding of films on mucin-coated membranes, which was why the initial contact
force was reduced. However, both pull-off and shear maximum adhesive force per unit
area were observed to increase with increasing PVP content, although CMC is well known

as a mucoadhesive polymer (85).

Changes in both mechanical and adhesive properties showed clear trends with
changing PVP content. Because measurements of mechanical properties showed that 1:2
films were tough with high modulus and UTS and that 2:1 films were more adhesive, only
1:2 and 2:1 PVP:CMC films were selected for better understanding of PVP and CMC
effects on release, swelling, and erosion profiles. The close relationship between drug
release and mass loss for 1:2 films suggests that release of imiquimod was controlled by
erosion of the films. Comparison of mass loss and release profiles for 2:1 films, however,
suggests that release of imiquimod was controlled by both diffusion and erosion. This
interpretation was also supported by Korsmeyer-Peppas mathematical modeling.
According to this model ‘n’ value of greater than 1 suggests super case-2 relaxation, which
involves erosion of films and swelling-controlled polymer relaxation, and the ‘n’ value of

0.89 suggests anomalous, non-Fickian diffusion.

Two types of swelling studies were performed for better understanding of film
behavior. While conventional swelling studies based on mass gain, the gold standard for
swelling studies, showed behavior of films in bulk solutions, the agar-based radial swelling
studies can better mimic the conditions of a film applied to the mucosal surface, which is
the intended application of this delivery system. CMC, which is known for its water-

retaining properties, was observed to reach swelling index of 3000 and still retain its
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integrity, unlike PVP films, which had a lower swelling index and eroded faster. Hence,
the presence of more CMC in 1:2 PVP:CMC films caused more swelling compared to 2:1
PVP:CMC films. Early erosion of 2:1 PVP:CMC films at 60 min can also be attributed to
the presence of more PVP. This early erosion of polymer chains from 2:1 PVP:CMC films
may have enhanced diffusion of eroded chains through agar, resulting in more radial
swelling than was observed for 1:2 PVP:CMC films.

Combining both mathemical modeling, release, erosion and swelling profiles, it
can be understood that drug release from 1:2 PVP:CMC films was controlled by swelling
and slow erosion of films that resulted in sustained release. In contrast, earlier and faster
erosion of chains and less swelling opened up the bulk of 2:1 PVP:CMC film and resulted
in burst release. This was then followed by continually decreasing concentrations of drug,

which were governed by diffusion of drug from the residual polymeric matrix into buffer.

Because a potential application of the mucoadhesive films is for local treatment of
oral dysplasia, studying the transport characteristics and permeability of imiquimod in vitro
can give preliminary knowledge about feasibility of this approach before initiating in vivo
studies. The goal is to deliver and retain drug in the epithelium rather than penetration into
vasculature for systemic distribution. Porcine tissue was chosen because of its close
resemblance to human buccal mucosa and its extensive use in other permeability studies
(12, 82). The thickness of epithelium in human mucosa ranges from 250 um to 400 pum
(12) . Prior studies showed that use of tissue sections <500 um represents transport kinetics
of a compound through epithelium. Transport kinetics through mucosa were dominated by

connective tissue when tissue sections were >500 um (12).

Permeability studies of four different compounds encompassing hydrophilic and
hydrophobic compounds on only the epithelial layer showed that permeation increased
with lipophilicity (12). Other permeability studies on hydrophilic substances, such as
mannitol and lidocaine hydrochloride, showed low permeability and used fatty acids, such
as oleic acid, to increase the permeation through the epithelium (86, 87). Hydrophobic
susbtances, such as carvedilol, had rapid permeation in the first few hrs (81). Because
imiguimod is also hydrophobic, it showed good permeability when used alone in a solution.

The current PVP:CMC mucoadhesive films significantly decreased the flux of imiquimod
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and helped localize imiquimod in the epithelium. Interactions of mucoadhesive polymers
with the epithelial tissue as well as the hydrophilicity and large size of the polymers may
have resulted in their being trapped in the tissue, which created a transport barrier and
reduced permeation. Brief literature review of several other mucoadhesive systems for the
above localization effect of drug revealed absence of the above type of data. Majority of
articles didn’t compare/ report/analyze the amount of drug being retained in tissue when
films and control solutions were used (45, 61, 81, 86, 88, 89). Parameters such as flux and
permeability coefficient were only reported. Although 1:2 PVP:CMC films exhibited
sustained release of imiquimod for up to 3 hrs in contrast to 2:1 films, for which burst
release was observed in first 40 mins and continously decreased release, no significant
difference was evident between both films in transport kinetics or absorption within
epithelium. This may be attributed to inability of the polymers to permeate the tissue, which
thereby acted as the rate limiting step, rather than erosion of polymers, which control the

release of drug.

A variety of polymers are being used to develop mucoadhesive films for delivery
of different drugs. Some of the more extensively used polymers include
hydroxypropylmethylcellulose (HPMC), chitosan, hydroxylethylcellulose (HEC),
carbopol, Eudragit RL PO, gelatin, CMC, PVA, polyethylene (PE) and PVP (K30 and K90
variations) (13-16, 45, 60, 61, 81, 83, 84, 86, 90). In addition, new copolymers are being
developed, such as copolymers of methylvinylether and maleic anhydride (PMVE/MA)
(14) and acrylic acid and 2-ethylhexyl acrylate (83). All these polymers and blends of
different compositions have advantages and disadvantages. For example, while chitosan is
a natural, adhesive polymer, the resulting films can be brittle (60). Addition of other
polymers, such HEC (60), PVP K30 (13), copolymer of PVA and PE (16), to chitosan
increased the film-forming ability, UTS, and percentage of elongation. In the present work,
however, a range of properties can be achieved simply by adjusting the ratio of PVP to
CMC.

The measured range of adhesion, mechanical, and drug release properties of
mucoadhesive films can be attributed to the combined properties of PVP and CMC. The

hygroscopic nature and tackiness of PVP increased adhesive properties, while the
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excessive swelling and slower erosion of CMC aided film retention during the release
studies. The ability of PVP to absorb moisture (up to 40% of its weight) resulted in
decreased modulus and UTS because it enabled PVP chains to move and reposition more
easily under load. With increasing CMC content, however, chain entanglement and
decreased mobility may have increased modulus and UTS and decreased elongation.
Swelling studies showed the early erosion of pure PVP films beginning at 60 min, but the

presence of CMC helped control erosion, thereby providing sustained release for 3 hr.

4.5 Conclusion
The present mucoadhesive drug delivery system based on CMC and PVP offers a

wide range of tensile, adhesive, degradation, and release properties without addition of new
polymers/excipients. Controlled release and increased localization of imiquimod within the
epithelium provided by PVP:CMC mucoadhesive films may increase the potential of these
films for local treatment of oral dysplasia. Further bioactivity studies in vivo will be
important for determining the best combination of properties and appropriate film type for
treatment of dysplastic lesions
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Chapter 5 Effects of Epidermal Growth Factor-Loaded Mucoadhesive Films
on Wounded Oral Tissue Rafts

5.1 Introduction
Craniomaxillofacial (CMF) injuries encompassing hard and soft tissues occur in

15-34% of general trauma patients (91), the epidemiology of which involves accidents,
sports, and violence (30). Battlefield casualties also include significant CMF trauma. In
Operation Iragi Freedom, 26% of injuries involved CMF, and 58% of those had soft tissue
(mucosal and connective tissue) deficits (31). Oral mucosal deficiencies are also created in
several clinical conditions, such as post-neoplastic ablation, periodontal pathologies, tooth
replacements, and preparation of oral mucosal grafts for urethral reconstructive surgery
(32, 33).

The gold standard for treating defects in the oral mucosa is use of autologous tissue
from other mucosal surfaces (91). This approach, however, has several shortcomings,
including limited availability of mucosal tissue for harvest and second surgical site
morbidity. Although autologous skin grafts have also been used, several complications,
such as excessive keratinization, absence of a moist surface at the recipient site, and
unwanted hair growth, were observed (32). Tissue engineered oral mucosal grafts grown
ex vivo are being explored as an alternative treatment. Some of these grafts, such as those
obtained by culture of epithelial cells derived from the stem cells of patients, or collagen
scaffolds (obtained by decellularization of cadaveric dermis (Alloderm®)) loaded with
epithelial cells, improved healing and showed short-term clinical success (34, 35). Such
tissue engineered grafts, however, still lack key morphological characteristics, such as a
thick epithelium, rete ridge formation, and a mature basement membrane (32). In addition,
they can also be limited by unavailability as off-the-shelf products, reduced viability,
difficult manipulation and handling during surgery (35), and cost of the treatment.
Although tissue grafts made from a patient’s own cells can be useful in preplanned
surgeries, they may not be available in trauma situations for 4-6 weeks. A readily available
system/biologic capable of protecting the wound site and promoting native mucosal

regeneration may significantly improve the healing process.

Mucoadhesive drug delivery systems are being used to improve the efficiency of

drug administration and avoid first pass metabolism (3, 4, 10). In addition to protecting a
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wound from the oral environment, these systems can provide controlled release of drug
with high flux and increased bioavailability (4). Commercialized systems, such as BEMA®
technology (Bio Delivery Sciences International) and trans-mucosal films (Watson
Pharmaceuticals), are primarily used for rapid systemic drug delivery. These systems
having short erosion times (15-60 min) are not appropriate for localized treatment of

conditions requiring prolonged availability of drug.

Epidermal growth factor (EGF), a polypeptide of 53 amino acids, plays an essential
role in epithelial wound healing by stimulating proliferation and migration of
keratinocytes. It also promotes formation of granulation tissue and stimulates fibroblast
motility (92). In vitro studies show that EGF plays a significant role in healing of mucosal
tissues by promoting migration and proliferation of epithelial cells in the oral cavity and
intestinal mucosa (93, 94). Exogenous EGF improved tongue wound healing in
sialodenectomized mice, i.e., mice from which salivary glands were removed, where the
majority of EGF is produced (95). Elevated levels of EGF were found in humans for up to
48 hours after oral surgery, which promoted faster healing (96).

EpiOral (ORL 300-FT; MatTek, Ashland, MA) is a lab-grown, multilayered,
epithelial tissue supported by a collagen bed containing fibroblasts, which is similar in
structure to oral mucosa and submucosa. These in vitro buccal phenotype tissues grown
from human oral keratinocytes exhibit several important features, such as lipid profile,
basal cells, human beta-defensins, metabolic and mitotic activity, and several specific
integrins. ORL 300-FT tissues are also being used in irritation, oral pathology (mucositis),
and absorption studies as an alternative to animal testing (97). The similar structure to
native tissue and presence of active cells capable of producing biomolecules and
proliferating provide a unique platform for investigating mucoadhesive films in
comparison to in vitro testing in sink conditions (simulated saliva) or with nonviable tissues
ex vivo. Intimate contact, rate of swelling, erosion, clearance of polymers, and interactions

with cells can better mimic in vivo conditions.

Owing to the key role of EGF in promoting mucosal wound regeneration and the
advantages of mucoadhesive delivery systems, the goal of the current studies was to

develop a mucoadhesive system providing sustained release of bioactive EGF. Because
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application of mucoadhesive films in the oral cavity of small animals poses practical
difficulties, the efficacy of the materials was subsequently investigated in vitro using

buccal tissues (ORL 300-FT) as a potential replacement for small animal studies.

5.2 Materials and Methods

5.2.1 Fabrication of films
Mucoadhesive (1:2 PVP:CMC) films were prepared from polyvinylpyrrolidone

(PVP) K-90 (Spectrum Chemicals; New Brunswick, NJ) and carboxymethylcellulose
(CMC; sodium salt, medium viscosity; Sigma, St. Louis, MO) (98). Briefly, solutions of
PVP (40% wi/v aqueous solution of PVP combined with ethanol at 1:1 v/v and followed by
addition of 50% v/v propylene glycol) and CMC (2% w/v aqueous solution) were mixed.
Human recombinant EGF (Shenandoah Biotechnology, Warwick, PA) or lysozyme
(Sigma) solubilized in deionized water containing 0.1 % bovine serum albumin (BSA;
Sigma) was then added to the polymer solution, thoroughly mixed using a heavy duty
rotator at high speed (Roto Torque; Cole Parmer, Chicago, IL), and left overnight at 43°C
to remove bubbles. The resulting mixture was cast in Teflon dishes and dried at 60°C for
5.5 hours. The obtained films were stored in a desiccator at 4°C with 20% relative humidity

for 24 hours before use.

5.2.2 Release studies
The difference in release profiles between sink and non-sink conditions was

investigated using mucoadhesive films loaded with lysozyme (4 ug). Profiles for EGF-
loaded films were then determined in non-sink conditions. Samples contained 105 ng of
EGF to achieve and maintain a concentration of 3.5 ng/mL in the release supernatants.
Concentrations of lysozyme labeled with AlexaFluor 350 (Invitrogen, Carlsbad, CA) were
determined by measuring fluorescence (excitation=346 nm, emission=442 nm), and EGF
was quantified by ELISA (Fisher Scientific, Waltham, MA).

For sink conditions, samples of 10 mm diameter were attached to the wall of 6 mL
polyethylene vials so that release of drug was limited to only one side. All polyethylene
vials were precoated with 0.1% BSA to block nonspecific adsorption sites and limit the
loss of protein. The samples were immersed in 6 mL of simulated saliva (SS; 16 mM
Na:HPO4, 1.3 mM KH2PO4, 136.9 mM NaCl, pH=6.75 (53)) and incubated at 37°C with
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shaking at 150 rpm. Half of the supernatant was collected at predetermined intervals and

replaced with fresh SS. Supernatants were stored at 4°C until analysis.

Release studies were performed in non-sink conditions with volumes comparable
to those used for epithelial raft experiments (described separately). Samples of 10 mm
diameter were placed on nylon cell strainers (100 um pore size), which were laid on top of
the wells of 24-well plates. Wells were filled with 3.5 mL of SS such that the liquid
contacted just the bottom of the films/strainers. Supernatants of volume 0.5 mL were

collected at predetermined intervals and were replaced with fresh SS.

Cumulative release profiles were analyzed using the Korsmeyer-Peppas

mathematical model (45):

Mt

— = kt"

M.,

where Mt /M., is the drug fraction released at time t, k is a constant depending on structural
and geometric characteristics of the system, and n is the diffusional coefficient related to
release mechanism. While n=0.45 indicates Fickian diffusion, 0.45<n<0.89 indicates non-

Fickian diffusion, and n>0.89 indicates case-2 relaxation.

5.2.3 Effect of films on viability of tissues
Because subsequent experiments would involve adhering the mucoadhesive films

to epithelial tissues, the effect of films on tissue viability was first assessed using ORL-200
cultures (MatTek, Ashland, MA). ORL-200 tissues are multilayered human buccal tissue
models with organized basal cells and multiple non-cornified epithelial cell layers grown
on filters. Epithelial raft inserts of inner diameter 9 mm were transferred to 6-well plates
and maintained at the air-liquid interface by adding 900 uL of assay medium (Figure 5.1).
Film samples of diameter 8.75 mm were sterilized by UV exposure for four hours, attached
to the epithelial tissue, and incubated at 37°C in a cell culture environment (5% COy). Rafts
were exposed to films for 6, 12, or 24 hours. A control group without mucoadhesive film

was cultured for 24 hours.

For analysis, tissue inserts were blotted dry, transferred to 24-well plates preloaded
with 300 pL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
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solution, and incubated for 3 hours. Tissue inserts were then transferred to fresh 24-well
plates, immersed in extractant solution, and incubated for 2 hours at room temperature on
an orbital shaker in the dark. The optical density at 650 nm was subtracted from absorbance
at 570 nm.

5.2.4 EGF bioactivity
Bioactivity of EGF loaded into films was confirmed by measuring the proliferative

effect of release supernatants on BALB/3T3 fibroblasts (ATCC CCL-163). Activity of
“fresh”, unprocessed EGF was tested by determining its proliferative effect prior to
confirming bioactivity of supernatants from EGF-loaded films. Cells were suspended in
0.5 mL of DMEM supplemented with 2.5% calf serum (Hyclone Thermo Scientific,
Waltham, MA) and seeded into 24-well plates at 7,500 cells/well. Cells were allowed to
adhere overnight, and then EGF was added to wells at concentrations ranging from 19
pg/mL to 40 ng/mL. After 3 days, proliferation was determined by quantifying DNA
contents. Hoechst 33258 (Sigma-Aldrich; St. Louis, MO) was added to cell lysates to
achieve 100 ng/mL, and fluorescence (excitation =356 nm, emission = 458 nm) was

measured after incubation of 10 minutes at 21°C.

Mucoadhesive films were then loaded with EGF such that diluted release
supernatants reached concentrations within the linear range determined for unprocessed
growth factor (37-315 pg/mL). This range was used to avoid false positives because of
saturation effects at high concentrations. The volume of release supernatant added to the
proliferation assay wells was <2%. The proliferative effect of EGF in release supernatants

was compared to control (fresh EGF in medium) at the same concentration.

5.2.5 Wound healing
Although viability assays were performed on ORL 200 tissues containing only

epithelial cells, wound healing studies were performed on full thickness ORL 300-FT
epithelial raft tissues, because these full thickness tissues are supported by a collagen bed
containing fibroblasts that provide growth factors and other biomolecules in an efficient

way to the epithelial cells, mimicking in vivo conditions.
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5.2.5.1 Time course
The time course of wound healing/closure in ORL-300 FT raft cultures was

determined before investigating the efficacy of EGF. Wounds of 3 mm diameter were made
using a stainless steel biopsy punch (Huot Instruments, Menomonee, WI). Care was taken
to remove only the epithelial part of the rafts, leaving the layers of collagen with embedded
fibroblasts intact. Tissue inserts were then transferred to 6-well plates and elevated using
two washers to accommodate 5 mL of medium, thus maintaining air-liquid culture
conditions for extended periods of time (Figure 5.1). Medium was replaced every other
day. Wound closure was determined by measuring the unhealed area after collecting tissues
at0, 2, 4, 6, or 8 days.
5.2.5.2 Effect of EGF

The effect of EGF, EGF-loaded films, and blank films on wound healing was
investigated at 3 and 5 days, which were chosen from the prior time course study. Tissues
were set up and epithelial wounds made as previously described. A total of 38 tissues was
divided into six groups to elucidate the effect of polymers on migration of cells during
healing and limiting transport of EGF through tissues: 1) control/EGF-free medium; 2) 5
ng/mL EGF in medium; 3) blank (no EGF) films; 4) EGF-loaded films; and 5) EGF-loaded
films placed in medium without contacting tissue. Published in vitro and in vivo studies
showed that 1-5 ng/ml EGF results in maximal cell migration and wound healing in animals
(93, 96, 99). Based on the previously determined release profiles, each EGF film was
loaded with 300 ng to achieve 5 ng/mL in the medium at the end of 8 hours (removal of
film).

For groups that involved application of films, sterilized, 5.6 mm diameter films
were applied to 9 mm tissues having 3 mm wounds. Films were carefully removed after 8
hours to avoid tissue damage. The tissues were then incubated with 300 pL of PBS for 30
minutes to solubilize residual polymer that could hinder migration of cells. Medium was

replaced every day for all groups to maintain uniformity.

5.2.5.3 Reconstruction of wound and determination of wound area
Collected tissues were removed from inserts, fixed overnight in 4% formalin,

embedded in paraffin, and sectioned at a thickness of 10 um. At every 250 um across the

9 mm diameter of the tissue, a section was mounted onto a slide, stained with hematoxylin
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and eosin (H&E), and analyzed for wound area. The length of unhealed wound bed was
quantified in two ways, where: 1) thickness of the epithelial tissue was less than 50% of
that in unwounded tissue and 2) the collagen bed was devoid of epithelial cells. These
measurements of unhealed wound bed were plotted in Excel separated at 250 pum
increments, the perimeter encompassing the wound outlined, and the unhealed wound area
calculated using ImageJ software (Figure 5.2). Histological features of tissues were

assessed by an oral pathologist (C.B.F.)

5.2.6 Statistical analysis
All experiments were conducted with a minimum of triplicates and repeated at least

once to demonstrate reproducibility of results. The results are expressed as mean + standard
error unless otherwise noted. While unpaired, two-tailed student t-tests were used to
compare bioactivity of release supernatants and “fresh” EGF, ANOVA with the Tukey
post-hoc test was used for the rest of the comparisons. Results were considered statistically

significant if p<0.05.
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Figure 5.1. Schematic of tissue raft setup and conditions for viability (ORL-200) and
wound healing studies (ORL 300-FT). Mucoadhesive films of diameter 8.75 mm were

adhered to ORL-200 to cover the tissue surface. Wounds (3 mm) to only the epithelial layer

were made in ORL 300-FT using a punch biopsy, and films of diameter 5.6 mm were
adhered.
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Figure 5.2. Determination of unhealed wound area. The measured widths of unhealed

wound were spaced 250 um apart, and the area encompassing the wound was calculated
by ImageJ.
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5.3 Results

5.3.1 Release profiles
PVP:CMC mucoadhesive films were able to achieve sustained release of two

proteins. Under sink conditions, release of the 14.3 kDa lysozyme was observed for 160
minutes, but the duration was extended up to 320 minutes in non-sink conditions that
mimicked those necessary for culture of tissue rafts (Figure 5.3a). Mathematical modeling
of the release profiles based on the Korsmeyer-Peppas equation showed ‘n’ values of 1.30
and 0.715 for sink and non-sink conditions, respectively.

The 1:2 PVP:CMC mucoadhesive films were also able to achieve sustained release
of the smaller EGF (6.2 kDa) for up to 360 minutes in non-sink conditions (Figure 5.3b).
The desired concentration of 3.5 ng/mL was achieved at 150 minutes and then maintained
in the range of 3.5 to 4.0 ng/mL for rest of the release profile. However, the amount of EGF
released in 6 hours was observed to be only 58%, unlike 80% of lysozyme released in 320
minutes. EGF was slowly released for the next 18 hours, reaching 88% by 24 hours (Figure
5.4). Applying the Korsmeyer-Peppas model to the release profile for EGF showed an ‘n’
value of 1.20.

5.3.2 Effect of films on viability of tissues
Viability of ORL-200 tissues decreased 15% compared to control (no films) when

films were applied for 24 hr (Figure 5.4). No difference from control was observed at the
6 and 12 hr time points. These results suggest that mucoadhesive films can be applied for

up to 12 hr without affecting the viability.
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Figure 5.3. A) Cumulative release of lysozyme from 1:2 PVP:CMC mucoadhesive films
in sink and non-sink conditions. B) Instantaneous and cumulative release of EGF from 1:2

PVP:CMC mucoadhesive films in non-sink conditions. The horizontal line indicates the

cumulative percentage released after 24 hr of incubation. Data are mean + standard error
(n=3).
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Figure 5.4. Viability of ORL-200 tissues after application of mucoadhesive films for up

to 24 hr. Data are mean + standard error (n>3).
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5.3.3 Bioactivity of EGF
The mitogenic effect of EGF on BALB/3T3 fibroblasts was clearly seen as a

biphasic increase in DNA content, which corresponded to the number of cells (Figure 5.5a).
EGF significantly (p<0.05) increased cell proliferation with increasing concentration up to
315 pg/mL and remained stable from 315 pg/mL to 5 ng/mL, after which DNA contents
were lower. The minimum concentration of EGF required to elicit a statistically significant
increase in proliferation was 19 pg/mL. The linear range of EGF effect was between 39
and 315 pg/mL. Based on these results, bioactivity of EGF released from mucoadhesive
films into SS was tested at concentrations of 75, 150, and 300 pg/mL (Figure 5.5b). The
mitogenic effect of EGF released from mucoadhesive films was comparable to that for
EGF directly added to media; no significant differences in DNA content were observed

between release supernatants and the fresh EGF at the three concentrations tested.

5.3.4 Wound healing studies

5.3.4.1 Time course
A clear time-dependence in wound healing and closure was observed in ORL 300-

FT tissues in vitro (Figure 5.6). Wound area is shown in terms of control wounds that were
created and fixed immediately before healing could occur. The length of unhealed wound
in each section was considering unhealed if the epithelial layer was less than 50% of normal
thickness. The unhealed wound area was observed to be 60, 30, and 17% by the end of
days 2, 4, and 6, respectively, with complete wound closure observed at 8 days. Although
one sample in each of the 4 and 6 day groups also healed completely, all other specimens
in those groups had a notable amount of unhealed wound area. The time points of 3 and 5

days were chosen as the middle and endpoints to investigate the effect of EGF on healing.
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Figure 5.5. A) Mitogenic effect of unprocessed EGF on proliferation of BALB/3T3
fibroblasts. B) Comparison of cell proliferation in response to EGF released from
mucoadhesive films with that for unprocessed EGF at three different concentrations.
Proliferation was measured by DNA contents and is expressed as a percentage of control

(no EGF) cultures. Data are mean + standard error (n>3).
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5.3.4.2 Effect of EGF films
Because the patterns and absolute values of healing measured by the two methods

were different, results are presented for both approaches.

Thickness: Introduction of EGF by any type of delivery (medium, EGF-loaded films
adjacent to tissue, and EGF-loaded films directly on the tissue) resulted in decreased wound
healing at day 3 (Figure 5.7a), although no significant differences in wound area were
observed between groups. Blank films also resulted in decreased wound healing compared
to controls, whose wounds were 85% healed. Wounds continued to close from day 3 to day
5, except for the soluble EGF group, which showed a significant (p<0.01) increase in
unhealed wound area compared to all other groups; no significant differences were
observed between the remaining groups.

Epithelialization: EGF did not improve wound healing compared to controls, with no

significant difference between groups (Figure 5.7b). However, quantification by
epithelialization showed increased healing of wounds compared to the previous thickness
method. This increase was more prominent in the EGF-treated groups than non-treated
groups. Based on epithelialization of wounds, at day 3, healed wound area increased by
17-27% in all EGF-treated groups and increased by only 5.5 and 4.6% in the non-treated
groups. At 5 days, wounds in the controls and tissues treated with EGF films were observed
to heal completely, with 90% closure observed in the remaining groups, although the
differences were not statistically significant. The increase in healed wound areas due to
quantification method remained the same (17-20% in EGF-treated groups, 74% for EGF
in medium, and 6 and 9% for the control and blank groups, respectively).

Histological observations of tissues revealed a hyperparakeratotic response in
groups treated with EGF, which was not evident in control and blank film groups (Figure
5.8). EGF-treated groups were observed to have other distinguishable histological features,
such as acanthosis (thickening of the spinous layer), intercellular edema (clear cytoplasm),
intracellular edema (spongiosis), pyknotic nuclei, and a few areas of dyskeratosis (Figure
5.9). The wound bed of EGF-treated groups was observed to be covered with basal cells
comparable to non-EGF groups, however spinous and squamous cell layers were not

developing. The non-wounded area of EGF-treated tissues, meanwhile, became swollen,
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and excessive parakeratin was produced (Figure 5.10). After producing keratin, cell layers
were observed to flake along with keratin during histological processing. The
hyperparakeratotic response was more predominant in tissues treated with soluble EGF and
EGF-loaded films adjacent to the rafts compared to those directly exposed to EGF films

(Figure 5.10), which was also supported by quantitative analysis (Figure 5.7b).
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Figure 5.6. Time course of ORL-300 FT tissue healing presented as a percentage of the

initial wound (3 mm diameter). Data are mean + standard error (n>3).
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Figure 5.8. Hyperparakeratotic response evident in tissues treated with EGF films
compared after 5 days. A) After treatment with EGF-loaded films, excess parakeratin was
observed to be stained dark pink and appeared as fibers on the surface of the tissue. B)

Less or no parakeratin was observed in control tissues. Arrows represent wound edges
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Figure 5.9. Comparison of histological features of EGF-treated and untreated tissues.
Moderate and prominent appearance of acanthosis, edema (intercellular and intracellular),
and pkynotic nuclei were observed for A) EGF films in medium and B) EGF medium,
whereas intact structures were seen for C) control tissues exposed to neither mucoadhesive
film nor EGF and D) those with blank films.
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Figure 5.10. Treatment with EGF caused incomplete wound healing. Wound beds were
covered with only basal cells in tissues exposed to A) EGF medium or B) EGF films
compared to completely healed wounds containing basal cells, a spinous layer, and
squamous cell layers for tissues with C) blank films. Arrows represent approximate edges
of the wound.
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5.4 Discussion
Prominent treatments for oral mucosal deficits include: a) the gold standard of

autologous grafts, b) allografts, and c) alternative tissue engineered grafts. In addition to
other limitations of autologous grafts, harvesting of mucosal tissue from a donor site can
result in several morbidity issues, such as numbness, tightness of the mouth, motor deficits,
and contractures (33). Although engineered tissues, such as EVPOME (ex vivo produced
oral mucosa equivalent) (35), have shown some promising results, use of these grafts must
be planned long before surgery. Extraction of a patient’s own cells, multiplication of these
cells in vitro, and finally introduction of these cells onto collagen scaffolds to form 3D
grafts typically takes around 8 weeks (35, 91, 100), thus hindering off-the-shelf
availability. In addition, viability of the developed grafts, such as EpiOral, is up to only 2
weeks. The present mucoadhesive films are hence being developed to bridge this gap in
cases of sudden traumatic injuries to provide protection and aid in regeneration of native
mucosa by delivering bioactive molecules. These films may also avoid the need for grafts

if significant progress in healing is achieved.

EGF has been shown to promote epidermal wound healing in several animal and a
few clinical case studies (92, 101). In addition, EGF plays an important role in mucosal
regeneration. This was demonstrated by treating animals unable to produce EGF
(sialoadenectomized and diabetic mice) with exogenous EGF (95, 102). However, few
studies investigating the use of EGF-loaded devices to treat mucosal wounds are found in
the literature. Research performed by Gonul et al. showed efficacy of EGF-loaded
poly(ethylene glycol) pellets along with titanium rings in oral mucosal incisional wounds
(103). Because the EGF pellets were sutured under tissue, they were protected from the
oral environment, and thus the situation is different from treatment of large mucosal
wounds. Application of exogenous EGF in methylcellulose gel did not enhance wound
healing of 2 mm mandibular alveolar mucosa in healthy rats (104). Application of such
systems to wounds may be practically difficult in animal models because they may be
removed or compromised by the animals. Hence, an in vitro mucosal tissue, i.e., EpiOral
(ORL 300-FT), was used to investigate the efficacy of EGF-loaded mucoadhesive films in

promoting wound healing.
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The present release studies also demonstrated the versatility of the mucoadhesive
system in providing sustained release of hydrophilic proteins ranging from 6-14 kDa in
addition to small hydrophobic molecules, such as imiquimod (0.24 kDa), shown in
previous work (98). The difference in cumulative amounts of EGF (58%) and lysozyme
(80%) by the end of 6 hours may be attributed to the concentration gradient arising from
the different initial loadings of EGF and lysozyme, i.e., 105 and 4,000 ng, respectively.
The observed biphasic effect of EGF on proliferation of fibroblasts is consistent with
previous articles of decreased mitogenicity when concentrations exceeded 10 ng/ml (93,
99).

Tissues treated with EGF in any form exhibited a hyperparakeratotic response.
Microscopic characteristics observed in EGF-treated groups, such as parakeratosis,
acanthosis, pyknotic nuclei and few instances of dyskeratosis, are seen as features of
leukoplakia (105, 106). The wound beds of EGF-treated groups were covered with a single
basal layer of cells, although with some delay compared to controls. This observation
suggests that EGF elicited a different kind of response, driving cells to produce more
keratin and edema rather than increasing proliferation to cover the wound. Even though
basal cells covered the wound beds, further maturation and differentiation to form spinous
layers may have been inhibited by the action of EGF. This response was more evident in
groups containing fresh, soluble EGF in the medium compared to those with sustained,

unidirectional, and slow release of EGF from films.

Different instances of a hyperparakerotic response of epithelial cells when treated
with EGF in vitro are evident in the literature. Makarova et al. showed moderate
upregulation of cytokeratin 13 (responsible for parakeratin) with high levels of EGF in
various head and neck squamous cancer cell lines grown in vitro (107). EGF receptor
(EGF-R) was upregulated in regions of oral leukoplakia, showing a role for EGF in the
histological appearances of acanthosis and pyknotic nuclei (108, 109). Kondo et al.
observed that addition of EGF to organ cultures of rabbit ear skin explants caused the
epidermis to become acanthotic with orthokeratosis, and further increases in the
concentrations of EGF caused parakeratosis (110). Schneider et al. reported that EGF-
loaded self-assembling peptide nanofibers caused a five-fold increase in wound healing of
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in vitro human skin equivalents at two days compared to untreated groups (111). The
amount of EGF loaded, however, was 1,000 ng compared to 25 ng in the present studies,
and because results were shown after only 48 hours, complete closure of wounds did not
occur. EGF-treated groups showed epithelial tongues, which were similar to the thin basal
cell layers observed in the present study. Histological images of EGF-treated tissues of

Scheider et al. also showed dark pink fibers compared to non-treated groups (111).

EGF was shown to be prominent in healing of skin and mucosal wounds in animals,
but it must be noted that the current experiments were conducted in vitro on multilayered
buccal tissues. These rafts are similar to native tissue with multiple epithelial cell layers,
collagen loaded with fibroblast mimicking connective tissue, and capable of wound healing
(as observed in the control specimens). But several other molecules and proteins that play
key roles in controlling EGF-stimulated proliferation and timely differentiation may be
missing, causing different response such as hyperparakeratosis. Investigation of EGF-
loaded films in animals is required to verify the hyperparakeratotic effect of EGF. Testing
of the films in animals can also lead to better understanding of the potential for in vitro

tissues to mimic/replace small animals in oral mucosal wound healing studies.

5.5 Conclusion
Mucoadhesive films having the ability to deliver bioactive molecules in a sustained

manner and adhere to oral mucosal tissues for up to four hours were developed. Although
released EGF did not accelerate wound healing of oral tissue rafts, it elicited a
hyperparakeratotic response. In vitro buccal tissues may not be appropriate for testing the
effects of EGF in wound healing without incorporation of other biochemical factors.
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Chapter 6 Local Delivery of Imiquimod using Mucoadhesive Films in Hamsters and
Residence Time in Humans

6.1 Introduction
Oral squamous cell carcinoma (OSCC) refers to any malignant cancer that arises

from squamous epithelial cells in the oral cavity. This is the 10" most common type of
cancer and was estimated to affect 42,440 new patients and cause 8,390 deaths in the
United States of America in 2014 (21). OSCC is commonly preceded by discolored (red or
white) precancerous lesions characterized by abnormal growth (hyperplasia) and
maturation (dysplasia) of epithelial cells. The likelihood of progressing to carcinoma
depends on the severity of dysplasia. Early diagnosis and treatment of these oral dysplastic
lesions can prevent them from progressing to OSCC and avoid further complications (5,
6).

Available treatment options for OSCC, such as radiation and chemotherapy, are
used after dysplastic lesions have already progressed to OSCC, and they commonly lead
to post-treatment morbidity. Although surgical resection can be performed to excise
moderate to severe dysplastic lesions, the procedure results in loss of tissue and
compromise of function. Hence, mucoadhesive films loaded with the immune response
modifier imiquimod were designed in previous studies for preemptive, noninvasive, and
localized treatment of oral dysplastic lesions (98). Mucoadhesive drug delivery systems
have been developed to localize the drug at mucosal surfaces, which avoids loss by first
pass metabolism and side effects associated with systemic delivery. In addition to increased
bioavailability, adherence between the mucoadhesive polymers and absorbing tissue
provides high flux and prolonged residence time of the drug at the desired site (112).
Imiquimod as Aldara® cream (5% imiquimod) was approved for treating superficial basal
carcinoma. Off-label use has shown effectiveness in treating neoplasms of the vulvar
epithelium, and the potential for application to melanoma of the intraepithelial oral mucosa
and to oral leukoplakia has been reported based on uncontrolled single case studies (7, 8,
47, 50). Because retention of hydrophobic creams such as Aldara® can be compromised in
the oral cavity due to the moist tissue surfaces and continuous saliva turnover, a better
delivery system developed for intraoral applications may improve the local and sustained
release of drug.
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The previously developed mucoadhesive films were able to achieve sustained
release of imiquimod for up to 3 hours in vitro (75, 98). The ex vivo residence time,
transport Kinetics, and bioactivity of imiquimod-loaded films were also characterized as a
function of composition. Although commonly used for initial screening of formulations,
the in vitro behavior of a device will not necessarily reflect the performance in vivo because
of differences in clearance rate, mechanical loading, pH, biochemical activities, etc.
Consequently, in vivo testing is required to determine the actual residence time, release
kinetics, and ability of the system to deliver drug to tissue. Relatively few reports describe
testing mucoadhesive films in animals, particularly those with application sites that enable
prolonged residence (104, 113). The hamster cheek pouch model, which remains the most
widely used for OSCC studies may provide inaccessible regions of buccal mucosa with

physiological similarities to human tissue (26, 114).

The focus of the present studies was to conduct a preclinical evaluation of the
performance characteristics of a mucoadhesive delivery system in vivo. After evaluating
the residence time of films at different application sites in the hamster cheek pouch, the
ability of the films to deliver and retain imiquimod in the oral mucosa with minimal
systemic distribution was determined. Subsequently, the residence time of drug-free films

at different intraoral sites was determined in human subjects.

6.2 Materials and Methods

6.2.1 Materials
Imiquimod was purchased from CalBiochem (White House Station, NJ). The

polymers used for making films were polyvinylpyrrolidone (PVP) K-90 (Spectrum; New
Brunswick, NJ) and carboxymethylcellulose (CMC; sodium salt, medium viscosity;
Sigma, St. Louis, MO). Other chemicals used were propylene glycol, USP grade ethanol
(190 proof), methanol, poly(ethylene-co-vinyl acetate) (PEVA; 18wt% vinyl acetate;
Sigma-Aldrich, St. Louis, MO); solid phase extraction tubes (STRATA XC; Phenomenex,
Torrance, CA) and a generic version of Aldara®, 5% imiquimod (Perrigo, Dublin, Ireland)
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6.2.2 Fabrication of films
Bilayered, imiquimod-loaded mucoadhesive films were fabricated as described

previously (98). Briefly, aqueous solutions of PVP (1:1:1 ratio of 40% w/v in deionized
water: ethanol: propylene glycol) and CMC (2% w/v) were added to imiquimod solubilized
in 3:7 acetate buffer (100mM, pH 4):methanol, mixed thoroughly, and stored overnight at
43 °C to remove bubbles. The backing layer was prepared by casting 10% w/v PEVA in
toluene into Teflon dishes and drying at 30 °C for 48 hours in sealed containers (98).
Bilayered films were subsequently made by casting the mucoadhesive polymer solution
onto the PEVA and drying at 60 °C. Films were then removed from the dishes and stored
in a desiccator at -10 °C. Mucoadhesive films with two compositions (1:2 and 2:1
PVP:CMC) and two different thicknesses were prepared (Table 6.1).

Blank films were similarly fabricated for human studies by mixing a drug-free
solution of acetate buffer:methanol into the polymer solutions. Samples of diameter 7 and
10 mm were then punched and used for the hamster and human experiments, respectively.
All films samples were terminally sterilized by exposure to UV light for 1.5 hours on each

side in addition to aseptic fabrication using sterile solvents.
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Table 6.1. Thickness of the PVP:CMC mucoadhesive films tested.

Type (PVP:CMC) Thickness (mm)
1:2 thin 0.36+0.032
1:2 thick 0.55+0.026
2:1 thin 0.36+0.018
2:1 thick 0.47+0.008
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6.2.3 Residence time and distribution of imiquimod in hamsters
All animal studies were conducted at the University of Kentucky in accordance

with a protocol approved by the Institutional Animal Care and Use Committee (IACUC).
Forty four male golden Syrian hamsters weighing 90-115 g (Harlan, Indianapolis, IN) were
used. With animals under mild isoflurane anesthesia, mucoadhesive films were applied to
the left cheek pouch by gentle pressure for 10 sec. Hamsters were then transferred to an
empty plastic cage with no bedding, food, or water for the remainder of the experiment.
Blood was collected for drug measurement by cardiac puncture under deep anesthesia, and
the animals were immediately euthanized by CO, asphyxiation. The treated and control

(right side) cheek pouches were excised and assayed for drug content.

6.2.3.1 Pilot study
A small pilot study was initially conducted to identify the preferred films and

application site for further analysis of drug distribution. The four types of mucoadhesive
films shown in Table 6.1 were loaded with either a low or high dose of imiquimod, i.e.,
0.675 mg/cm? (266 pg/sample) or 1.25mg/cm? (533 pg/sample). After application of the
films, cheek pouches were visually examined at intervals of 2 hours under mild anesthesia.
The time point at which either the backing layer was spit out by the animal or the film was
absent during visual examination was recorded as the residence time. Residence was
investigated at three different locations: cheek, middle of the pouch, and deep within the
pouch. After determining the best location to apply films, all four types at both the low and
high dose were applied to only the middle of the pouch to assess drug delivery.
6.2.3.2 Local retention of imiquimod

Based on results of the pilot studies, thick 1:2 PVP:CMC films were selected to
investigate the local retention of imiquimod in mucosal tissue. A total of 36 hamsters were
divided into three groups to test 1:2 PVP:CMC-high dose (1.25 mg/cm?), 1:2 PVP:CMC-
low dose (0.675 mg/cm?), and 5% imiquimod cream. For the generic version of Aldara®,
5.0 mg of cream (266 pg of imiquimod) were applied to 0.384 cm? area of tissue to achieve
the recommended concentration of 0.675 mg/cm?. Animals were euthanized at 2, 4, 8, and

12 hours after application of the film/cream.
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6.2.4 Quantification of imiquimod
Imiquimod was first extracted from 0.5 mL blood samples by solid phase extraction

(SPE) using Strata-XC columns. Briefly, whole blood was diluted with 3 parts of
acetonitrile containing 1% formic acid and centrifuged at 2000 g for 10 minutes. The
resultant supernatant was collected and diluted with an equal amount of deionized water.
This solution was then loaded in to pre-conditioned SPE tubes to remove impurities, such
as phospholipids. Imiquimod was then eluted into 5% ammonium hydroxide in methanol

for further analysis.

Tissues excised from hamsters were immediately transferred to 10 mL of acetate
buffer (pH 4.0, 100mM) and incubated at 37°C overnight with shaking at 150 rpm to extract
imiquimod (98). The resulting solution was filtered (0.2 pum) to remove tissue particles

before further analysis.

The amount of imiquimod extracted from blood and tissues was determined by
reverse phase high performance liquid chromatography (HPLC) using a Hitachi Primaide
system equipped with a Kinetex Cig column. Imiquimod was separated from other
constituents using a gradient mobile phase ranging from 20:80 to 80:20 acetonitrile to water
containing 0.1% TFA at a flow rate of 1 mL/min. Imiquimod was detected at a wavelength
of 242 nm.

6.2.5 Residence time in humans
Under a study protocol approved by medical Institutional Review Board (IRB) of

the University of Kentucky, the residence time of all four types of mucoadhesive films
(Table 6.1) was also determined in human subjects (age: 22-50, 10 male and 2 female).
Film samples of 10 mm diameter were applied to three different locations (left buccal
mucosa, dorsal side of tongue, and anterior mandibular gingiva) with gentle finger pressure
for 10 seconds. Subjects were asked to record two time points: 1) the time at which s/he
felt any change in position of the film from its original location and 2) the time at which
the film was completely eroded and/or the PEVA backing layer was completely dislodged
from the application site. PEVA backing layers were collected to measure mass and,
thereby, to quantify any residual mucoadhesive film. Subjects were asked to refrain from
eating and drinking during the course of the study.
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6.2.6 Statistics
All experiments were conducted with a minimum of triplicates, meaning that at

least three animals or human subjects were used for data collection at each time point. The
results are expressed as mean = standard deviation unless otherwise noted. ANOVA with
the Tukey post-hoc test was used to compare groups. Results were considered statistically

significant if p<0.05

6.3 Results

6.3.1 Application site and pilot study of imiquimod release
The residence time of films varied substantially at different application sites in

hamsters. Films applied to the cheek were easily recognized by the animals and removed
within 15-35 minutes. The recovered films appeared swollen, with only a small portion of
the film eroded. This behavior was observed irrespective of film type and thickness. Films
were then tested in cheek pouches accessed by two methods. In the first, the pouch was
revealed without complete eversion (Figure 6.1a). This method exposed the outside and
inside surfaces of the pouch, shown by yellow and blue labels, respectively. Films applied
to the middle region of the inside surface stayed for a variable time, ranging from 3-8 hours,
but films applied to outside surface consistently showed a residence time of 3-4 hours.
Films were completely eroded in both locations, and the backing layer was recovered from
90% of the animals. In the second method, the cheek pouch was completely everted to
access the deepest part of the pouch (Figure 6.1b). When films were applied to this region,
the residence time was consistently extended to 8-9 hours. Because the residence time of
films applied to the outside surface of the cheek pouch was consistent as well as being

close to the anticipated duration in humans, it was selected for further analysis.

The pilot study also showed that the amount of imiquimod extracted from tissue
treated with low dose films (0.675 mg/cm?) was 10 times higher for thicker 1:2 PVP:CMC
films and was doubled for thicker 2:1 PVP:CMC films when compared to their thinner
counterparts. This trend was also observed for the high dose films (1.25 mg/cm?). Because
of these findings, combined with the better sustained release previously measured in vitro
(98), thick 1:2 PVP:CMC films were selected for further study of imiquimod retention in

mucosal tissue. Macroscopic manifestations of inflammation, such as erythema, erosion,
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edema, and swelling, were not observed on the tissue after treatment with imiquimod-
loaded films through 12 hr.

6.3.2 Local retention of imiquimod
Thick 1:2 PVP:CMC mucoadhesive films delivered imiquimod to the buccal

mucosa. The amount of drug retained in the tissue at 2 and 4 hr was maintained at 71 and
50 ug (27 and 20% of drug applied), respectively, for low dose films and 96 and 76 pg (18
and 14% of drug applied), respectively, for high dose films, as long as the films remained
adherent to tissue (Figure 6.2). After complete erosion of films by 3-4 hr, drug content
decreased significantly (p<0.05) to 10-20 pg as observed at the 8 and 12 hr time points.
Use of high dose (526 pg vs. 266 g in low dose) films did not double the local retention
of drug, but a significant increase (p<0.01) of 35% was measured at 2 hr, with no significant
differences observed at the remaining time points. Application of 5% imiquimod cream
resulted in 160 pg (60% of amount applied) of drug in mucosal tissue at 2 hr. The time at
which the cream was washed away and/or eroded was difficult to measure because of the
relatively small amount used and the color of the ointment. The tissue drug content was
maintained around 100 pg (38%) for up to 8 hr, after which clearance decreased the amount
to 33 pg. Imiquimod retained in the tissue following application of the cream was
significantly higher (p<0.01) than the amounts for both low and high dose films at only 2
and 8 hr.
6.3.3 Blood concentrations of imiquimod

No traces of imiquimod were found in the blood of hamsters treated with either
dose of mucoadhesive film (Figure 6.3). Application of 5% imiquimod cream, however,
resulted in imiquimod being found in the blood of 50% of the animals (6 out of 12
hamsters). While one animal each at the 2 and 4 hr time points showed imiquimod
concentrations of 8.56 and 248 ng/mL, two animals each at 8 and 12 hr time points had

concentrations at an average of 18 and 12 ng/mL, respectively.
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Figure 6.1. Different sites for applying mucoadhesive films in the hamster cheek pouch
model. A) The pouch was revealed without eversion, exposing both the outside (yellow)
and inside (blue) surfaces. B) The pouch was completely everted to allow access deep into
the pouch
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Figure 6.2. Amount of imiquimod retained in hamster mucosal tissue at increasing times
after application of thick 1:2 PVP:CMC mucoadhesive films (low or high dose) and 5%

imiquimod cream. Data are mean + standard deviation (n>3).
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Figure 6.3: Concentrations of imiquimod absorbed into blood of animals at increasing
times after application of thick 1:2 PVP:CMC mucoadhesive films (low or high dose) or
5% imiquimod cream. Data are mean * standard deviation (n>3). While 266 pg of
imiguimod was loaded in each sample of low dose films and cream, high dose films

contained 526 ug.
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6.3.4 Residence time in humans
Application of mucoadhesive films at different sites in the oral cavity resulted in a

range of residence times. Displacement or slight movement of films from their original
location was reported at an average of 70% of their final residence time (Figure 6.4A). At
cheek and gingiva application sites, thicker 1:2 PVP:CMC films stayed for longest times
without initial displacement, but no differences were found on tongue. While no significant
difference in displacement times was found between 1:2 thin and thick versions, 1:2 thick
films were significantly different (p<0.05) from both types of 2:1 at cheek and gingiva.

In conjunction with the above pattern, thicker 1:2 PVP:CMC films exhibited the
final longer residence time at the majority of application sites (Figure 6.4B). While films
applied to the tongue resided for the shortest time (1.1-1.4 hr), films exhibited the longest
residence times on the gingiva (1.4-4.1 hr), depending on the film type. Significant
differences between the residence times of different films were not observed on the tongue.
Although both the thin and thick 1:2 PVP:CMC films were retained on gingiva for
approximately 4 hr, the residence time for only the thin 2:1 PVP:CMC films was
significantly lower (p<0.01 and p<0.05, respectively). The residence time of films on the
cheek was intermediate between that for the gingiva and tongue sites. On the cheek, only
the thick 2:1 PVP:CMC films were significantly (p<0.05) different from thick 1:2
PVP:CMC films.

6.4 Discussion
Imiquimod in the form of a 5% cream (Aldara®) was approved by the FDA for three

indications: nonhyperparakeratotic actinic keratoses, superficial basal cell carcinoma, and
external genital warts (115). Off-label use of this cream has been for treating mucosal
surface disorders, primarily for lesions at different cancerous stages (6, 47, 50, 115). A
recent study of Aldara® in hamsters showed reversal of chemically induced well-
differentiated OSCC to mild dysplasia (116). Application of this cream in rats also halted
progression of OSCC induced by local application of carcinogen and it reversed mild-
moderate dysplastic lesions to hyperplastic lesions (117). In clinical trials using Aldara®
cream to treat various skin disorders, pharmacokinetic studies showed maximum serum
concentrations of 0.1-0.2 ng/mL at first dose, and 1.3-2.2 ng/mL after the last dose,

reflecting minimum systemic absorption and localization (115).
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The effect of this localization of imiquimod was clearly shown in the findings of
Imbertson et al., in which the concentrations of interferon (IFN) and tumor necrosis factor
(TNF) were significantly higher in the treatment area compared to contralateral, untreated
sites (118). The amount of imiquimod retained in the treatment area and clearance of the
drug have not been reported in either animal studies or clinical trials. Knowledge of local
drug contents is useful for designing drug delivery systems. For example, understanding
retention of imiquimod in tissues can be helpful in translating treatment from dermal to
mucosal indications because the permeability of drugs increases by 4-4000 times in the
latter (63). Such information can also provide a basis for adjusting the dosage regimen to
achieve therapeutic efficiency and avoid side effects. Hence, local retention of imiquimod
in the buccal mucosa of hamsters was quantified and compared between mucoadhesive
films and commercially available 5% imiquimod in addition to determination of residence
time. Although films were discarded by hamsters within 4 hours, time points of 8 and 12
hours were introduced to measure the clearance rate of imiquimod. Extraction of
imiquimod using acetate buffer was established and validated ex vivo in porcine mucosal

tissues by accounting for the total imiquimod content (98).

Although mucoadhesive formulations, such as Eudispert-Polycarbophil hydrogels
and methylcellulose gels, have been investigated for treatment of disorders in a limited
number of animal studies (102, 113), key properties such as prolonged residence and
release profiles were not reported. Several compounds have been tested either by adding
them to water or as liquid and cream formulations (116, 117, 119, 120). The present
mucoadhesive films, which were designed to last for 4-6 hours, require a suitable animal
model to check the efficacy of treatments in cancer models. Literature searches show
common use of mice, rats, hamsters for models of oral disease (121-123). Rodents that are
lower on the phylogenetic tree are more useful for mechanistic studies and early-stage
testing of potential treatments. Testing mucoadhesives in mice is not practical, however,
because of their small size. Even with the larger rats, the small buccal or palatal surfaces
are easily accessed by the tongue, increasing the likelihood of film dislodgement. In
contrast, placement of mucoadhesives in the buccal pouch of hamsters was anticipated to
isolate the films long enough to determine their performance characteristics. The hamster
cheek pouch model also resembles human tissue in many respects (26, 114). For example,
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the hamster cheek pouch shows histological similarity to the human cheek, although the
hamster has thinner mucosa than that found in the upper digestive tract of humans. In
addition, the hamster OSCC model exhibits several prominent characteristics of human
OSCC, including the appearance of transepithelial dysplasia and aberrant expression of
cytochrome P450, p53, p21, and Bcl-2 proteins, thus relating well to human disease (26,
124).

While the mucoadhesive films showed erosion times of only 4 hours in vitro (75),
films placed deep into cheek pouches stayed for 8 hr. This behavior is attributed to the
relative dryness deep within the pouch compared to the edges and the rest of the oral cavity.
In contrast to consistent residence times (3-4 hr) on the outside surface of the pouch,
mucoadhesive films adhered to the inside, middle surface displayed a wide range of
residence times (3-8 hr), likely because of differences in the animals accessing the films
and pushing them either deeper into the pouch or into the mouth. Films were accessed by
all animals before being spit out and were chewed or played with irrespective of application
site. Although the residence time of imiquimod cream was not found in hamsters because
of practical difficulties, previous in vitro studies® showed that the cream stayed for a

maximum time of only 1 hr.

The residence time of thick 1:2 PVP:CMC films in human subjects (3-4 hr) was
similar to that of films applied to the outside, middle surface of the hamster cheek pouch.
Other groups reported residence times of 2-8 hr for mucoadhesive films of different
polymer compositions in human subjects (15, 125). Such studies, however, were performed

on only the upper gingiva instead of different regions of the oral cavity.

Neither the drug-free films nor those loaded with imiquimod stimulated gross
inflammatory reactions that would be reflected by erythema and swelling. Other local site
reactions, such as itching or burning, were difficult to measure in animals, however
hamsters appeared comfortable throughout the experiment. What remains unknown is
whether such reactions would appear following repeated application of the films. The

human subjects did not report any side effects.
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The high tissue content of imiquimod (160 pg) in the cream group may be attributed
to the easier penetration of drug into the tissue compared to the slow and sustained release
from the mucoadhesive films. In addition, the fatty acids and alcohols used in the
formulation, which was developed for application to skin containing hair follicles (65),
increase permeation of drug through mucus and the epithelial cell layer (9, 12, 126).
Although fatty acids increase solubility and permeability of lipophilic drugs, their
extraction and disruption of lipid bilayers and intercellular lipids during this process has
been reported to cause irritation and swelling of the buccal mucosa (9). The product
information sheet for 5% imiquimod cream designed for treatment of skin disorders also

describes itching, burning, and irritation as common side effects (127).

Measurement of imiquimod in the blood of half of the animals treated with cream
reflects significant systemic absorption of drug, which was not evident following
application of both low and high dose mucoadhesive films. Imiquimod, enhances the innate
and acquired immune responses by activating monocytes and macrophages to secrete
several cytokines, such as tumor necrosis factor (TNF-a) and interleukins (46, 97). This
upsurge of immune response may be responsible for systemic side effects, such as fevers,
dizziness, muscle pain, and flu-like symptoms, observed for Aldara® cream (127).
Minimal systemic absorption and increased localization of drug will decrease these side
effects.

Although mucoadhesive films did not prolong drug retention as long as the cream
(up to 8 hr) did, their ability to deliver imiquimod and retain the drug in tissue while the
films remained adherent was clearly evident. The role of mucoadhesive polymers in
improving the retention of imiquimod was previously shown by PVP:CMC films
increasing the localization of imiquimod in porcine buccal mucosa by 50% compared to
drug solution.* Hence, an increased residence time can further increase bioavailability of
drug for 8 to 12 hr at therapeutic doses. Owing to a versatile manufacturing process, these
films can also be loaded with different compounds to increase permeability if needed.
Further studies would be needed, however, to balance increased permeability with no

systemic absorption and tissue irritation. Overall, the cream resulted in poorly controlled
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delivery, whereas mucoadhesive films moderated imiquimod release to help avoid
significant systemic distribution of the drug.

6.5 Conclusion
Mucoadhesive films developed to treat oral dysplastic lesions by sustained release

of imiquimod demonstrated a residence time of up to 4 hours in humans and animals. The
1:2 PVP:CMC mucoadhesive films were able to deliver imiquimod to oral mucosal tissue
and also help in localization of drug in tissue up to 12 hours with no systemic absorption.
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Chapter 7 Summary and Conclusion
A mucoadhesive film capable of delivering imiquimod to mucosal tissues has been

developed to treat oral precancerous lesions also known as dysplastic lesions. The
developed system offers noninvasive approach of treating precancerous lesions in contrast
to current invasive approaches. Problems caused by hydrophobic nature of imiquimod such
as maximum drug loading capacity and uniformity in the drug delivery system, were
addressed by using acetate buffer as a solvent, after investigating three methods of
imiquimod loading during fabrication of the films. The bioactivity of imiquimod was not
effected by its entrapment in the polymer matrix and manufacturing steps. The films
displayed adequate adhesion time in vitro on porcine mucosal tissues and significantly

higher than commercially available Aldara® cream.

To further understand the properties of the designed system, the compositions of
polymers PVP and CMC were changed to fabricate five types of films. These films are
compared with respect to key properties of a mucoadhesive system such as tensile, pull-off
and shear adhesion, swelling, erosion characteristics and release profiles. The
mucoadhesive system developed in this dissertation offered wide range of all these
properties, and 1:2 PVP:CMC type of film was selected for further studies. Sustained
release of imiquimod was achieved for 3 hours in vitro and release of imiquimod is
controlled by erosion of the films. The impermeable and non-degradable backing layer
facilitated release of imiquimod only to mucosal tissue and avoided loss of drug through

the oral route.

The films demonstrated a residence time of up to 4 hours in vivo in humans and
animals, comparable to in vitro findings. In addition to providing controlled release, the
mucoadhesive polymers also nearly doubled the retention of the imiquimod in epithelial
tissue of porcine mucosa in vitro. The retention of imiquimod was also observed in vivo in
hamster cheek pouches. The films delivered imiquimod to oral mucosal tissue and helped
localize the drug while they remained adherent for 4 hours, after which tissue drug content
decreased through 12 hours with no systemic absorption of imiquimod in to blood.
Although commercially available imiquimod cream resulted in higher drug contents
through 8 hours, half of the animals showed systemic absorption of imiquimod. Because

the films intend to provide localized treatment of dysplastic lesions with minimal side
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effects of the drug, zero systemic absorption and localization effect observed in vivo

increases the potential of translation of films in to clinic.

In addition, the versatility of films to load with different active molecules such as
proteins was proven by fabricating EGF loaded films for the treatment of mucosal wounds.
The mucoadhesive films also showed similar sustained release of lysozyme and bioactive
EGF as observed with imiquimod. When the efficacy of EGF loaded films in promoting
wound healing, was tested on in vitro buccal tissues, they elicited a hyperparakeratotic
response causing significant morphological changes. Although complete wound healing
was not promoted in this work, with the potential for sustained release of bioactive growth
factors and small molecules, the developed mucoadhesive delivery system may be loaded
with other desired compounds in conjunction with or without EGF to accelerate the process
of wound healing.

Overall, a mucoadhesive system capable of delivering bioactive small molecules
and proteins in sustained manner was developed in this work. A thorough understanding
of the system properties was achieved to further tune for future applications. In vitro studies
and in vivo studies in hamsters and humans clearly showed the potential and usefulness of
the system to translate in to clinic for the treatment of oral precancerous lesions. Further
improvement of residence time by modifying polymers in future studies, can significantly
enhance the potential of current system in treating several other disorders.
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APPENDIX

A.1 Introduction
Mucoadhesive films developed in this dissertation exhibited maximum residence

time of only 4-5 hours, as observed in in vitro and in vivo studies in earlier chapters.
Prolonged adherence of the films to the oral tissue can further extend the delivery of
imiquimod for more than 4 hours. In addition, long residence time of the films can be
advantageous for other local disorders such as oral tissue regeneration and mucositis.
Hence series of experiments were conducted by either incorporating additional new
polymer or change properties of current polymers, without significant changes in the
original composition of polymers. The objective of work in this section was to improve all
the essential properties such as erosion time, mucoadhesion time, and extended drug

release.

A.2 METHODS
Common methods used to analyze different film types in this chapter are described below

in this section.

A.2.1 Fabrication of films:
Films made up of 1:2 PVP:CMC composition were selected for further study of

increasing the residence time and erosion time. These films were renamed as 80:20
PVP:CMC composition in this appendix for easy comparison with other film types. Either
new polymers or existing polymers were added/substituted to former composition during
fabrication of different types of films in this appendix. Fabrication process of films
remained same as described previously in chapter 3. After aqueous polymer solutions of
PVP and CMC were mixed, new polymer solution (where applicable) were added to them
along with drug solution and thoroughly mixed, stored at 43° C overnight, and cast dried
in Teflon dishes at 60° C.

A.2.2 Swelling studies
Film samples of diameter 10 mm, with PEV A backing layer were incubated in 6

mL of SS at 37°C. The dry weight (W1) was recorded before immersion. Samples were

then removed at predetermined intervals, blotted dry from the backing layer side, and the
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weights were recorded as W». Films were compared based on the swelling index, which
was calculated as [(W2-W1)/W1]*100.

A.2.3 Ex vivo mucoadhesion time
Film samples of diameter 10 mm with PEVA backing layer were attached to the

mucosal surface of pre-hydrated (50 puL SS) porcine buccal tissue with slight finger
pressure. Tissue samples were attached to a glass slide with cyanoacrylate glue. The glass
slide was fixed to the moving actuator of a BOSE ELF3300 mechanical testing system and
allowed to move up and down into 700 mL of SS at a rate of 18 cycles per min. The film
was completely immersed in the buffer solution at the lowest point and was out of the
solution at the highest point. The time at which partially eroded films or the backing layer
of completely eroded films was detached from the tissue was recorded as the ex vivo

mucoadhesion time.

A.2.4 Release and Erosion studies
Samples of diameter 10 mm with PEV A backing layer were punched from random

points of cast films and used in this study. These samples were immersed in 6 mL of SS
in 6 well plates and incubated at 37°C with shaking at 150 rpm. Half of the supernatants (3
mL) were collected and stored at predetermined intervals and were then replaced with fresh
SS. Imiquimod released into the supernatants was quantified by reverse phase high
performance liquid chromatography (HPLC) using a Hitachi Primaide system equipped
with a Kinetex Cig column. Imiquimod was separated from other constituents using a
gradient mobile phase ranging from 20:80 to 80:20 acetonitrile to water containing
0.1%TFA at a flow rate of 1 mL/min, and detected at a wavelength of 242 nm. In addition
to above studies, modified release studies were also conducted in subsequent experiments
to address key problems. Changes such as full replenishment of release supernatants and/or

replacing SS with acetate buffer (pH 4.0, 100 mM) were implemented.

Destructive erosion (mass loss) studies were performed in a similar way in 6 mL of
SS. The initial sample weight (W1) was recorded before the study, and final weight (W>)
was measured after drying the eroded samples at 43°C overnight. Mass loss was calculated

and plotted against erosion time.
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A.3 Eudragit

A.3.1 Rationale
Previous studies (98) revealed that sustained release of imiquimod from 80:20

PVP:CMC formulation was caused by swelling of polymers and resultant slow erosion of
films. However, rate of swelling was fast, reaching 245 % and 410 % by 10 and 60 minutes,
respectively. Hence it was hypothesized that decrease in the swelling rate of these films
may result in decreased erosion rate, thus increasing residence time. A hydrophobic
polymer, Eudragit RL-PO (EUD; copolymer of ethyl acrylate, methyl methacrylate with
low content of methacrylic ester with quaternary amine groups) was hence added to
existing composition in an attempt to decrease swelling rate. Because majority of swelling
in original films was contributed from CMC, no change in original composition was

performed.

A.3.2 Film types
Four types of films with increasing EUD amounts were prepared and characterized.

EUD was dissolved in methanol and added to PVVP and CMC polymer solution as described
above. EUD was added to reach 0,20,40,60 % w/w of total weight of PVP and CMC

polymers.

A.3.3 Results and Discussion

A.3.3.1 Swelling:
Increased EUD concentration in the original PVP:CMC films resulted in lower

swelling indexeseven though the amount of PVP&CMC remained constant in all types of
films (Figure A.1) . Significant erosion of films was started from 200 minutes, and films
in absence of EUD eroded quickly followed by completely erosion by 360 minutes.
Incorporation of EUD resulted in almost stagnant swelling index of 200-250 from 300
minutes and were not completely eroded by the end of 7 hours. These results suggest the
potential of EUD incorporated films to increase the erosion time of the films. However, it
has to be observed that swelling studies were performed in static conditions, unlike release

studies where dynamic conditions by shaking at 150 rpm were employed.
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Figure A.1. Swelling profiles of mucoadhesive films with increasing amounts of EUD.
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A.3.3.2 Ex vivo mucoadhesion time
Mucoadhesion time of all film types at two different thickness were tested on

porcine buccal mucosa. Thicker version of films are 0.1 mm thicker than their
thinner/normal versions. Incorporation of EUD did not significantly affect the ex vivo
mucoadhesion time of normal films except 60% EUD type of film whose residence time
was significantly decreased from 0 and 20% EUD (Figure A.2). Ex vivo mucoadhesion
time followed biphasic trend with increase in EUD concentration in case of thicker films.
Ex vivo mucoadhesion time increased at 20% EUD and started decreasing with further
increase in EUD concentration. Statistical differences between mucoadhesion times of film

types are shown in Figure A.2.

A.3.3.3 Release profiles
No difference in drug (imiquimod) release profiles was observed with incorporation

of EUD polymer except that total amount of imiquimod released was observed to be higher
with increase in EUD concentration (Figure A.3a). Drug was observed to be released for
up to 8 hours in all types of formulations. However, 0%, and 20% EUD films were
completely eroded by 210-240 minutes and 240-270 minutes, respectively. In contrary,
40% EUD films were broken in to 2-3 pieces, and 60% EUD films stayed intact at the end
of study. In addition, 40% and 60 % EUD film types have also lost their adherence and
separated from its backing layer by 90-120 minutes.

Release of the drug into release supernatants even after complete erosion of films
in 0 % and 20% EUD film types may be attributed to collection and replenishment of half
supernatants at each interval. Even though films were completely eroded, they may have
still remained as invisible chunks of polymer in unremoved supernatants, and releasing
drug slowly. Hydrophobic nature of the imiquimod may also have resulted in adsorption
on plate surfaces to avoid SS, and getting solubilized after addition of fresh supernatants.
Hence release studies were performed by fully replenishing the supernatants to confirm the
hypothesis of delayed release of imiquimod from eroded chunks of polymer.
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As hypothesized, amount of imiquimod extracted in to release supernatants
decreased when release supernatants were fully replenished and discarded. Surprisingly,
amount of imiquimod released between non EUD and EUD films was also significantly
different in better sink conditions, and increased with increasing EUD concentrations
(Figure A.3b). This increase may be due to increase in solubility of imiquimod owing to
hydrophobic interactions between EUD and imiquimod. Because 60% EUD films stayed

intact till the end of study, imiquimod was continuously being released.

Although release supernatants were fully replenished, very small amounts of
imiquimod being released after complete erosion of the films, may be because of extremely
hydrophobic nature of imiquimod, and thus its tendency to avoid SS by attaching to walls
of tube and/or backing layer. These assumptions were confirmed when backing layers were

dried after experiments and re-suspended in SS after 24 hours (results not shown).

A.3.3.4 Erosion studies
Mass loss of 20% and 60% EUD films with time were studied to understand the

behavior of polymers and their erosion characteristics. Mass loss profile of 20% EUD films
showed its complete erosion by 240-270 minutes, supporting visual observations (Figure
A.4). However 60% EUD films lost a maximum of 62% of their mass only and remained
intact by the end of study. Because PVP+CMC constitutes 62.5% mass (represented by
horizontal lines in Figure A.4) in the later films, it shows diffusion of PVP and CMC with

time leaving behind intact films made of EUD.
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the initial mass percentage of PVP+CMC of total polymer loaded in to films during

fabrication
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A.3.4 Conclusions
Incorporation of the hydrophobic polymer EUD increased erosion time with

increase in its concentrations. However, diffusion of the hydrophilic polymers through
intact matrix of EUD resulted in no difference between release profiles of different types
of films. Although imiquimod was being released from 60% EUD films beyond 300
minutes in better sink conditions, loss of their adhesiveness to backing layer, and decrease

in mucoadhesiveness to tissue hinders them from further development.

EUD increased release of drug into SS, and was more evident in only better sink
conditions. Mucoadhesive films in in vivo conditions will have tight adherence to mucus
tissue unlike free exposed surface in vitro. Such set up may have different sink conditions
and its similarity to both tested conditions in this chapter is unknown. Permeability studies
on Franz cell as performed in chapter 2 will further help determine the role of EUD in

better release of drug.
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A.4 Agar

A.4.1 Rationale and types of films
Saha et.al showed that addition of agar to PVP and CMC resulted in increase of

erosion times up to 8 weeks and swelling indexes of 1400 (128-130). Hence agar was added
to the current films, and quick erosion studies and ex vivo mucoadhesion time were
calculated. Three types of films with increasing agar concentrations were prepared. Agar
was added to reach 10, 25, and 100% of PVP + CMC weight and heated at 120 °C, 15 psi
for 15-20 minutes. The resultant solution was then casted in to Teflon dishes and dried for

different times.

A.4.2 Results and discussion
Film samples of 100% agar, stayed intact after 12 and 24 hours in 10 ml of SS.

Cloudiness of release supernatants increased with time. However, samples lost adherence
to their backing layer as early as 45 minutes. Hence ex vivo mucoadhesion time of films
with different agar loading were determined before further studies. Compared to
mucoadhesion time of 10 hours for normal 80:20 PVVP:CMC films, addition of agar stayed
foronly 2, 3, and 0.75 hours for 10,25, and 100% agar loaded films. Backing layers of agar

loaded films were also separated as early as 45 minutes.

A.4.3 Conclusion
Because adhesion of the films to mucus tissue is essential for release of drug, agar

loaded films were not further studied even though they exhibited long erosion times
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A.5 Increase in weight percentage and molecular weight of CMC

A.5.1 Rationale
Swelling studies and release profiles of 1:2 PVP:CMC and 2:1 PVP:CMC in

chapter 2 showed that presence of more CMC increased swelling, erosion time and caused
sustained release of drug up to 3 hours. Hence amount of CMC was further increased in
this following study and resultant properties were investigated. In addition, CMC was
replaced with its new variant of higher molecular weight and their swelling and release
profiles were studied. The molecular weight of old CMC and new CMC were 250,000 and
700,000 Da. It was hypothesized that these changes in CMC increases, swelling, erosion

time and release time of drug.

A.5.2 Film types
Three types of films were prepared as shown in Table A.1 with varied amounts of

PVP and CMC. Amounts of other constituents such as polyethylene glycol remained same.

Resultant solutions were mixed and casted in to Teflon dishes as described above.

A.5.3 Results and Discussion

A.5.3.1 Swelling studies
Swelling indexes of the films increased with increase in both mass, and molecular weight

of CMC as hypothesized (Figure A.5). Films made up of high molecular weight CMC have
swollen excessively and were difficult to handle after 340 minutes. While normal films
completely eroded by 270 minutes, new film types remained intact up to 520 minutes. In
addition to retaining their mass and uptake of water, significant swelling in radial direction
was also observed with diameters of 2-3 times more than backing layer. Because new film
types did not erode completely after 520 minutes, release profiles of these film types were

further investigated to determine their capability to extend the drug release
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Table A.1. Amounts of PVP and CMC in different types of films

Type PVP (g) CMC (9)

80:20 0.8 0.2

100:50 1.0 0.5
80:20 new CMC 0.8 0.2
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A.5.3.2 Release studies
Release of imiquimod from the films was examined in acetate buffer (pH 4.0, 100mM),

unlike SS, and release supernatants were completely replenished. Although SS is more
similar to in vivo conditions, acetate buffer was used in this study only, to examine the
potential of the new film types to extend drug release. Acetate buffer, possessing solubility
of 2 mg/mL for imiquimod, may avoid any problems associated with hydrophobic nature
of imiquimod, as observed during EUD studies. Release of imiquimod after complete
erosion of films was observed during studies using SS (results not shown), and hence was
difficult to interpret the effect of new film types.

Irrespective of the film type, imiquimod was released only up to 300 minutes
(Figure A.6). No significant differences in release profiles of imiquimod was observed
between film types. Although new film types stayed intact after 270-300 minutes, unlike

80:20 PVP:CMC films, imiquimod may have already diffused in to release supernatants.

A.5.4 Conclusion
Increase in mass and molecular weight of CMC increased erosion time and swelling

of the mucoadhesive films. However, release of drug through their swollen matrix resulted

in no improvement of extended drug release.
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A.6 Future Directions
Changes in physical design of system are desired to achieve balance in

improvement of all essential properties, in order to continuously use current composition
of polymers with minimal changes. Some of these changes may include incorporation of
drug free perforated hydrophobic polymer layers to decrease swelling and erosion rates
while maintaining adhesion to mucus tissue. Significant change in composition of
polymers by addition of extra mucoadhesive polymer, such as polycarbophil or chitosan,
can also enhance the residence time and drug release (131). Modification of polymers by
conjugating molecules such as lectin, fimbriae can provide specific adhesion to cells
(cytoadhesion), and thus increasing residence time (10). Such cytoadhesion of polymers
helps in overcoming limitations of long residence time, caused by continuous mucus and

saliva turnover (10).
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